Suppr超能文献

基于质粒的哺乳动物正呼肠孤病毒反向遗传学系统,由质粒编码的 T7 RNA 聚合酶驱动。

A plasmid-based reverse genetics system for mammalian orthoreoviruses driven by a plasmid-encoded T7 RNA polymerase.

机构信息

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.

Laboratory of Viral Replication, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases (BIKEN), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

出版信息

J Virol Methods. 2014 Feb;196:36-9. doi: 10.1016/j.jviromet.2013.10.023. Epub 2013 Oct 29.

Abstract

Mammalian orthoreoviruses (reoviruses) have served as highly useful models for studies of virus replication and pathogenesis. The development of a plasmid-based reverse genetics system represented a major breakthrough in reovirus research. The current reverse genetics systems for reoviruses rely on the expression of T7 RNA polymerase within cells transfected with reovirus gene-segment cDNA plasmids. In these systems, the T7 RNA polymerase is provided by using a recombinant vaccinia virus expressing T7 RNA polymerase or a cell line constitutively expressing T7 RNA polymerase. Here, we describe an alternative plasmid-based rescue system driven by a plasmid-encoded T7 RNA polymerase, which could increase the flexibility of such reverse genetics systems. Although this approach requires transfection of an additional plasmid, virus recovery was achieved when A549, BHK-21, or L929 cells were co-transfected with a reovirus 10-plasmid set together with a plasmid encoding T7 RNA polymerase. Theoretically, this system offers the possibility to generate reoviruses in any cell line, including those amenable to propagation of viral vectors for clinical use. Thus, this approach will increase the flexibility of reverse genetics for basic studies of reovirus biology and foster development of reoviruses for clinical applications.

摘要

哺乳动物正呼肠孤病毒(呼肠孤病毒)一直是研究病毒复制和发病机制的非常有用的模型。基于质粒的反向遗传学系统的发展是呼肠孤病毒研究的重大突破。目前用于呼肠孤病毒的反向遗传学系统依赖于用转染了呼肠孤病毒基因片段 cDNA 质粒的细胞中转染 T7 RNA 聚合酶来表达 T7 RNA 聚合酶。在这些系统中,T7 RNA 聚合酶是通过使用表达 T7 RNA 聚合酶的重组痘苗病毒或稳定表达 T7 RNA 聚合酶的细胞系来提供的。在这里,我们描述了一种由质粒编码的 T7 RNA 聚合酶驱动的替代基于质粒的拯救系统,该系统可以提高此类反向遗传学系统的灵活性。尽管这种方法需要转染额外的质粒,但当 A549、BHK-21 或 L929 细胞与编码 T7 RNA 聚合酶的质粒共转染时,可实现呼肠孤病毒 10 质粒组的恢复。从理论上讲,该系统为在任何细胞系中产生呼肠孤病毒提供了可能性,包括那些适合于用于临床的病毒载体繁殖的细胞系。因此,这种方法将提高反向遗传学在呼肠孤病毒生物学基础研究中的灵活性,并促进呼肠孤病毒在临床应用中的发展。

相似文献

1
A plasmid-based reverse genetics system for mammalian orthoreoviruses driven by a plasmid-encoded T7 RNA polymerase.
J Virol Methods. 2014 Feb;196:36-9. doi: 10.1016/j.jviromet.2013.10.023. Epub 2013 Oct 29.
2
Reverse genetics for mammalian reovirus.
Methods. 2011 Oct;55(2):109-13. doi: 10.1016/j.ymeth.2011.07.002. Epub 2011 Jul 21.
3
An improved reverse genetics system for mammalian orthoreoviruses.
Virology. 2010 Mar 15;398(2):194-200. doi: 10.1016/j.virol.2009.11.037. Epub 2009 Dec 29.
4
Reverse Genetics for Mammalian Orthoreovirus.
Methods Mol Biol. 2017;1602:1-10. doi: 10.1007/978-1-4939-6964-7_1.
7
Entirely plasmid-based reverse genetics system for rotaviruses.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2349-2354. doi: 10.1073/pnas.1618424114. Epub 2017 Jan 30.
8
Recovery of murine norovirus and feline calicivirus from plasmids encoding EMCV IRES in stable cell lines expressing T7 polymerase.
J Virol Methods. 2015 Jun 1;217:1-7. doi: 10.1016/j.jviromet.2015.02.003. Epub 2015 Feb 16.
10
A single-plasmid reverse genetics system for the rescue of non-segmented negative-strand RNA viruses from cloned full-length cDNA.
J Virol Methods. 2017 Oct;248:187-190. doi: 10.1016/j.jviromet.2017.07.008. Epub 2017 Jul 22.

引用本文的文献

1
Recent insights into reverse genetics of norovirus.
Virus Res. 2023 Feb;325:199046. doi: 10.1016/j.virusres.2023.199046. Epub 2023 Jan 16.
2
Reovirus Efficiently Reassorts Genome Segments during Coinfection and Superinfection.
J Virol. 2022 Sep 28;96(18):e0091022. doi: 10.1128/jvi.00910-22. Epub 2022 Sep 12.
3
4
Noncanonical Cell Death Induction by Reassortant Reovirus.
J Virol. 2020 Oct 27;94(22). doi: 10.1128/JVI.01613-20.
5
Exogenous gene can be expressed by a recombinant Bombyx mori cypovirus.
Appl Microbiol Biotechnol. 2018 Feb;102(3):1367-1379. doi: 10.1007/s00253-017-8667-9. Epub 2017 Dec 6.
6
Serotype-Specific Killing of Large Cell Carcinoma Cells by Reovirus.
Viruses. 2017 Jun 6;9(6):140. doi: 10.3390/v9060140.
9
Novel High-throughput Approach for Purification of Infectious Virions.
Sci Rep. 2016 Nov 9;6:36826. doi: 10.1038/srep36826.

本文引用的文献

1
Quantification of the host response proteome after mammalian reovirus T1L infection.
PLoS One. 2012;7(12):e51939. doi: 10.1371/journal.pone.0051939. Epub 2012 Dec 11.
2
Genetics and reverse genetics of rotavirus.
Curr Opin Virol. 2012 Aug;2(4):399-407. doi: 10.1016/j.coviro.2012.06.001. Epub 2012 Jun 30.
3
Reverse genetics for mammalian reovirus.
Methods. 2011 Oct;55(2):109-13. doi: 10.1016/j.ymeth.2011.07.002. Epub 2011 Jul 21.
4
An improved reverse genetics system for mammalian orthoreoviruses.
Virology. 2010 Mar 15;398(2):194-200. doi: 10.1016/j.virol.2009.11.037. Epub 2009 Dec 29.
6
A plasmid-based reverse genetics system for animal double-stranded RNA viruses.
Cell Host Microbe. 2007 Apr 19;1(2):147-57. doi: 10.1016/j.chom.2007.03.003.
10
Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus.
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4646-51. doi: 10.1073/pnas.0509385103. Epub 2006 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验