Suppr超能文献

使用多图谱联合标注融合和可变形中轴建模对 3D 经食管超声心动图图像中的二尖瓣叶进行全自动分割。

Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States; Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

Med Image Anal. 2014 Jan;18(1):118-29. doi: 10.1016/j.media.2013.10.001. Epub 2013 Oct 14.

Abstract

Comprehensive visual and quantitative analysis of in vivo human mitral valve morphology is central to the diagnosis and surgical treatment of mitral valve disease. Real-time 3D transesophageal echocardiography (3D TEE) is a practical, highly informative imaging modality for examining the mitral valve in a clinical setting. To facilitate visual and quantitative 3D TEE image analysis, we describe a fully automated method for segmenting the mitral leaflets in 3D TEE image data. The algorithm integrates complementary probabilistic segmentation and shape modeling techniques (multi-atlas joint label fusion and deformable modeling with continuous medial representation) to automatically generate 3D geometric models of the mitral leaflets from 3D TEE image data. These models are unique in that they establish a shape-based coordinate system on the valves of different subjects and represent the leaflets volumetrically, as structures with locally varying thickness. In this work, expert image analysis is the gold standard for evaluating automatic segmentation. Without any user interaction, we demonstrate that the automatic segmentation method accurately captures patient-specific leaflet geometry at both systole and diastole in 3D TEE data acquired from a mixed population of subjects with normal valve morphology and mitral valve disease.

摘要

全面的视觉和定量分析活体人类二尖瓣形态是二尖瓣疾病诊断和手术治疗的核心。实时 3 维经食管超声心动图(3D TEE)是一种在临床环境下检查二尖瓣的实用、信息量丰富的成像方式。为了便于进行视觉和定量 3D TEE 图像分析,我们描述了一种从 3D TEE 图像数据中自动分割二尖瓣叶的全自动方法。该算法集成了互补的概率分割和形状建模技术(多图谱联合标签融合和基于连续中轴表示的可变形建模),从 3D TEE 图像数据中自动生成二尖瓣叶的 3D 几何模型。这些模型的独特之处在于,它们在不同个体的瓣膜上建立了基于形状的坐标系,并以局部变化的厚度表示体积的瓣叶。在这项工作中,专家图像分析是评估自动分割的金标准。在没有任何用户交互的情况下,我们证明了自动分割方法能够准确地捕捉到 3D TEE 数据中不同个体的收缩期和舒张期的特定于患者的瓣叶几何形状,这些数据是从具有正常瓣膜形态和二尖瓣疾病的混合人群中获得的。

相似文献

3
Semi-automated segmentation and quantification of mitral annulus and leaflets from transesophageal 3-D echocardiographic images.
Ultrasound Med Biol. 2015 Jan;41(1):251-67. doi: 10.1016/j.ultrasmedbio.2014.09.001. Epub 2014 Oct 22.
4
Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):485-92. doi: 10.1007/978-3-642-40811-3_61.
5
Spatiotemporal Segmentation and Modeling of the Mitral Valve in Real-Time 3D Echocardiographic Images.
Med Image Comput Comput Assist Interv. 2017 Sep;10433:746-754. doi: 10.1007/978-3-319-66182-7_85. Epub 2017 Sep 4.
7
Fully automatic detection of salient features in 3-d transesophageal images.
Ultrasound Med Biol. 2014 Dec;40(12):2868-84. doi: 10.1016/j.ultrasmedbio.2014.07.014. Epub 2014 Oct 11.
8
Multi-atlas segmentation with robust label transfer and label fusion.
Inf Process Med Imaging. 2013;23:548-59. doi: 10.1007/978-3-642-38868-2_46.
9
Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound.
J Biomech. 2012 Mar 15;45(5):903-7. doi: 10.1016/j.jbiomech.2011.11.033. Epub 2012 Jan 26.
10
Patient-specific mitral valve closure prediction using 3D echocardiography.
Ultrasound Med Biol. 2013 May;39(5):769-83. doi: 10.1016/j.ultrasmedbio.2012.11.009. Epub 2013 Mar 13.

引用本文的文献

3
Euclidean and Shape-Based Analysis of the Dynamic Mitral Annulus in Children using a Novel Open-Source Framework.
J Am Soc Echocardiogr. 2024 Feb;37(2):259-267. doi: 10.1016/j.echo.2023.11.011. Epub 2023 Nov 22.
4
SlicerHeart: An open-source computing platform for cardiac image analysis and modeling.
Front Cardiovasc Med. 2022 Sep 6;9:886549. doi: 10.3389/fcvm.2022.886549. eCollection 2022.
6
Multimodal image analysis and subvalvular dynamics in ischemic mitral regurgitation.
JTCVS Open. 2020 Oct 30;5:48-60. doi: 10.1016/j.xjon.2020.10.007. eCollection 2021 Mar.
8
Unsupervised Mitral Valve Tracking for Disease Detection in Echocardiogram Videos.
J Imaging. 2020 Sep 9;6(9):93. doi: 10.3390/jimaging6090093.
9
In Vivo Image-Based 4D Modeling of Competent and Regurgitant Mitral Valve Dynamics.
Exp Mech. 2021 Jan;61(1):159-169. doi: 10.1007/s11340-020-00656-8. Epub 2020 Aug 17.

本文引用的文献

1
Deformable M-Reps for 3D Medical Image Segmentation.
Int J Comput Vis. 2003 Nov 1;55(2-3):85-106. doi: 10.1023/a:1026313132218.
3
Multi-Atlas Segmentation with Joint Label Fusion.
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
4
3D echocardiographic quantification in functional mitral regurgitation.
JACC Cardiovasc Imaging. 2012 Apr;5(4):346-7. doi: 10.1016/j.jcmg.2012.02.005.
6
Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound.
J Biomech. 2012 Mar 15;45(5):903-7. doi: 10.1016/j.jbiomech.2011.11.033. Epub 2012 Jan 26.
7
Mitral valve annuloplasty: a quantitative clinical and mechanical comparison of different annuloplasty devices.
Ann Biomed Eng. 2012 Mar;40(3):750-61. doi: 10.1007/s10439-011-0442-y. Epub 2011 Oct 25.
8
Patient-specific mitral leaflet segmentation from 4D ultrasound.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):520-7. doi: 10.1007/978-3-642-23626-6_64.
10
Quantitative mitral valve modeling using real-time three-dimensional echocardiography: technique and repeatability.
Ann Thorac Surg. 2011 Jan;91(1):165-71. doi: 10.1016/j.athoracsur.2010.10.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验