Suppr超能文献

经食管超声心动图的自动4D二尖瓣分割:一种半监督学习方法。

Automatic 4D mitral valve segmentation from transesophageal echocardiography: a semi-supervised learning approach.

作者信息

Munafò Riccardo, Saitta Simone, Tondi Davide, Ingallina Giacomo, Denti Paolo, Maisano Francesco, Agricola Eustachio, Votta Emiliano

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands.

出版信息

Med Biol Eng Comput. 2025 Jan 11. doi: 10.1007/s11517-024-03275-w.

Abstract

Performing automatic and standardized 4D TEE segmentation and mitral valve analysis is challenging due to the limitations of echocardiography and the scarcity of manually annotated 4D images. This work proposes a semi-supervised training strategy using pseudo labelling for MV segmentation in 4D TEE; it employs a Teacher-Student framework to ensure reliable pseudo-label generation. 120 4D TEE recordings from 60 candidates for MV repair are used. The Teacher model, an ensemble of three convolutional neural networks, is trained on end-systole and end-diastole frames and is used to generate MV pseudo-segmentations on intermediate frames of the cardiac cycle. The pseudo-annotated frames augment the Student model's training set, improving segmentation accuracy and temporal consistency. The Student outperforms individual Teachers, achieving a Dice score of 0.82, an average surface distance of 0.37 mm, and a 95% Hausdorff distance of 1.72 mm for MV leaflets. The Student model demonstrates reliable frame-by-frame MV segmentation, accurately capturing leaflet morphology and dynamics throughout the cardiac cycle, with a significant reduction in inference time compared to the ensemble. This approach greatly reduces manual annotation workload and ensures reliable, repeatable, and time-efficient MV analysis. Our method holds strong potential to enhance the precision and efficiency of MV diagnostics and treatment planning in clinical settings.

摘要

由于超声心动图的局限性以及手动标注的4D图像稀缺,执行自动且标准化的4D经食管超声心动图(TEE)分割和二尖瓣分析具有挑战性。这项工作提出了一种使用伪标签进行4D TEE中二尖瓣分割的半监督训练策略;它采用师生框架来确保可靠的伪标签生成。使用了来自60名二尖瓣修复候选者的120个4D TEE记录。教师模型由三个卷积神经网络组成,在收缩末期和舒张末期帧上进行训练,并用于在心动周期的中间帧上生成二尖瓣伪分割。伪标注的帧扩充了学生模型的训练集,提高了分割精度和时间一致性。学生模型的表现优于单个教师模型,二尖瓣小叶的骰子系数为0.82,平均表面距离为0.37毫米,95%豪斯多夫距离为1.72毫米。学生模型展示了可靠的逐帧二尖瓣分割,在整个心动周期中准确捕捉小叶形态和动态,与集成模型相比推理时间显著减少。这种方法大大减少了手动标注工作量,并确保了可靠、可重复且高效的二尖瓣分析。我们的方法在提高临床环境中二尖瓣诊断和治疗计划的精度和效率方面具有强大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验