Suppr超能文献

缝隙连接耦联与主细胞调节中间神经元兴奋性。

Regulation of interneuron excitability by gap junction coupling with principal cells.

机构信息

1] Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon, USA. [2] Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, USA.

出版信息

Nat Neurosci. 2013 Dec;16(12):1764-72. doi: 10.1038/nn.3569. Epub 2013 Nov 3.

Abstract

Electrical coupling of inhibitory interneurons can synchronize activity across multiple neurons, thereby enhancing the reliability of inhibition onto principal cell targets. It is unclear whether downstream activity in principal cells controls the excitability of such inhibitory networks. Using paired patch-clamp recordings, we show that excitatory projection neurons (fusiform cells) and inhibitory stellate interneurons of the dorsal cochlear nucleus form an electrically coupled network through gap junctions containing connexin36 (Cxc36, also called Gjd2). Remarkably, stellate cells were more strongly coupled to fusiform cells than to other stellate cells. This heterologous coupling was functionally asymmetric, biasing electrical transmission from the principal cell to the interneuron. Optogenetically activated populations of fusiform cells reliably enhanced interneuron excitability and generated GABAergic inhibition onto the postsynaptic targets of stellate cells, whereas deep afterhyperpolarizations following fusiform cell spike trains potently inhibited stellate cells over several hundred milliseconds. Thus, the excitability of an interneuron network is bidirectionally controlled by distinct epochs of activity in principal cells.

摘要

抑制性中间神经元的电耦合可以在多个神经元之间同步活动,从而增强抑制作用对主要细胞靶标的可靠性。目前尚不清楚主要细胞中的下游活动是否控制这种抑制性网络的兴奋性。通过配对膜片钳记录,我们发现耳蜗背核的兴奋性投射神经元(梭形细胞)和抑制性星状中间神经元通过包含连接蛋白 36(Cxc36,也称为 Gjd2)的缝隙连接形成电耦合网络。值得注意的是,星状细胞与梭形细胞的耦合比与其他星状细胞的耦合更强。这种异源耦合具有功能不对称性,偏向于将电信号从主要细胞传递到中间神经元。光遗传激活的梭形细胞群体可靠地增强了中间神经元的兴奋性,并在星状细胞的突触后靶标上产生 GABA 能抑制作用,而梭形细胞尖峰后深度超极化在几百毫秒内强烈抑制星状细胞。因此,中间神经元网络的兴奋性被主要细胞中不同的活动时期双向控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67a8/3963432/027d9e3e6c5b/nihms560022f1.jpg

相似文献

1
Regulation of interneuron excitability by gap junction coupling with principal cells.
Nat Neurosci. 2013 Dec;16(12):1764-72. doi: 10.1038/nn.3569. Epub 2013 Nov 3.
2
Auditory Golgi cells are interconnected predominantly by electrical synapses.
J Neurophysiol. 2016 Aug 1;116(2):540-51. doi: 10.1152/jn.01108.2015. Epub 2016 Apr 27.
3
Neostriatal GABAergic Interneurons Mediate Cholinergic Inhibition of Spiny Projection Neurons.
J Neurosci. 2016 Sep 7;36(36):9505-11. doi: 10.1523/JNEUROSCI.0466-16.2016.
5
Synaptic inputs to stellate cells in the ventral cochlear nucleus.
J Neurophysiol. 1998 Jan;79(1):51-63. doi: 10.1152/jn.1998.79.1.51.
7
Control of interneuron firing by subthreshold synaptic potentials in principal cells of the dorsal cochlear nucleus.
Neuron. 2014 Jul 16;83(2):324-330. doi: 10.1016/j.neuron.2014.06.008. Epub 2014 Jul 4.
8
Molecular layer inhibitory interneurons provide feedforward and lateral inhibition in the dorsal cochlear nucleus.
J Neurophysiol. 2010 Nov;104(5):2462-73. doi: 10.1152/jn.00312.2010. Epub 2010 Aug 18.
9
Spontaneous Activity Defines Effective Convergence Ratios in an Inhibitory Circuit.
J Neurosci. 2016 Mar 16;36(11):3268-80. doi: 10.1523/JNEUROSCI.3499-15.2016.
10
Synchronized gamma-frequency inhibition in neocortex depends on excitatory-inhibitory interactions but not electrical synapses.
J Neurophysiol. 2016 Aug 1;116(2):351-68. doi: 10.1152/jn.00071.2016. Epub 2016 Apr 27.

引用本文的文献

1
Dynamic electrical synapses rewire brain networks for persistent oscillations and epileptogenesis.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2313042121. doi: 10.1073/pnas.2313042121. Epub 2024 Feb 12.
2
Functionally Distinct Circuits Are Linked by Heterocellular Electrical Synapses in the Thalamic Reticular Nucleus.
eNeuro. 2024 Jan 10;11(1). doi: 10.1523/ENEURO.0269-23.2023. Print 2024 Jan.
4
D-type K+ current rules the function of electrically coupled neurons in a species-specific fashion.
J Gen Physiol. 2023 Sep 4;155(9). doi: 10.1085/jgp.202313353. Epub 2023 Jun 28.
5
Connexin36 RNA Expression in the Cochlear Nucleus of the Echolocating Bat, Eptesicus fuscus.
J Assoc Res Otolaryngol. 2023 Jun;24(3):281-290. doi: 10.1007/s10162-023-00898-y. Epub 2023 May 30.
6
On the Diverse Functions of Electrical Synapses.
Front Cell Neurosci. 2022 Jun 9;16:910015. doi: 10.3389/fncel.2022.910015. eCollection 2022.
7
Intrinsic Sources and Functional Impacts of Asymmetry at Electrical Synapses.
eNeuro. 2022 Mar 11;9(2). doi: 10.1523/ENEURO.0469-21.2022. Print 2022 Mar-Apr.
9
Structure and function of the gap junctional network of photoreceptive ganglion cells.
Vis Neurosci. 2021 Sep 16;38:E014. doi: 10.1017/S0952523821000134.
10
Using Cortical Neuron Markers to Target Cells in the Dorsal Cochlear Nucleus.
eNeuro. 2021 Feb 26;8(1). doi: 10.1523/ENEURO.0413-20.2020. Print 2021 Jan-Feb.

本文引用的文献

1
Spillover-mediated feedforward inhibition functionally segregates interneuron activity.
Neuron. 2013 Jun 19;78(6):1050-62. doi: 10.1016/j.neuron.2013.04.019. Epub 2013 May 23.
2
Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse.
J Neurosci. 2013 Mar 13;33(11):4768-81. doi: 10.1523/JNEUROSCI.5555-12.2013.
3
Effects of climbing fiber driven inhibition on Purkinje neuron spiking.
J Neurosci. 2012 Dec 12;32(50):17988-97. doi: 10.1523/JNEUROSCI.3916-12.2012.
4
Gap junctions compensate for sublinear dendritic integration in an inhibitory network.
Science. 2012 Mar 30;335(6076):1624-8. doi: 10.1126/science.1215101. Epub 2012 Mar 8.
6
Single-neuron recordings from unanesthetized mouse dorsal cochlear nucleus.
J Neurophysiol. 2012 Feb;107(3):824-35. doi: 10.1152/jn.00427.2011. Epub 2011 Nov 9.
7
How inhibition shapes cortical activity.
Neuron. 2011 Oct 20;72(2):231-43. doi: 10.1016/j.neuron.2011.09.027.
9
Spontaneous spiking and synaptic depression underlie noradrenergic control of feed-forward inhibition.
Neuron. 2011 Jul 28;71(2):306-18. doi: 10.1016/j.neuron.2011.05.039.
10
Neural mechanisms for filtering self-generated sensory signals in cerebellum-like circuits.
Curr Opin Neurobiol. 2011 Aug;21(4):602-8. doi: 10.1016/j.conb.2011.05.031. Epub 2011 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验