Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain.
Int J Environ Res Public Health. 2013 Oct 31;10(11):5671-82. doi: 10.3390/ijerph10115671.
Born in the early nineteen nineties, evidence-based medicine (EBM) is a paradigm intended to promote the integration of biomedical evidence into the physicians daily practice. This paradigm requires the continuous study of diseases to provide the best scientific knowledge for supporting physicians in their diagnosis and treatments in a close way. Within this paradigm, usually, health experts create and publish clinical guidelines, which provide holistic guidance for the care for a certain disease. The creation of these clinical guidelines requires hard iterative processes in which each iteration supposes scientific progress in the knowledge of the disease. To perform this guidance through telehealth, the use of formal clinical guidelines will allow the building of care processes that can be interpreted and executed directly by computers. In addition, the formalization of clinical guidelines allows for the possibility to build automatic methods, using pattern recognition techniques, to estimate the proper models, as well as the mathematical models for optimizing the iterative cycle for the continuous improvement of the guidelines. However, to ensure the efficiency of the system, it is necessary to build a probabilistic model of the problem. In this paper, an interactive pattern recognition approach to support professionals in evidence-based medicine is formalized.
诞生于 20 世纪 90 年代初的循证医学(EBM)是一种旨在促进将生物医学证据整合到医生日常实践中的模式。该模式要求对疾病进行持续研究,以便为医生的诊断和治疗提供最佳的科学知识。在这个模式中,健康专家通常会创建和发布临床指南,为特定疾病的护理提供全面的指导。创建这些临床指南需要经过反复的艰苦过程,每一次迭代都代表着对疾病知识的科学进步。要通过远程医疗执行这些指导,使用正式的临床指南将允许构建可以由计算机直接解释和执行的护理流程。此外,临床指南的形式化允许使用模式识别技术构建自动方法,以估计适当的模型以及优化迭代周期的数学模型,从而不断改进指南。然而,为了确保系统的效率,有必要构建问题的概率模型。本文形式化了一种用于循证医学的交互式模式识别方法,以支持专业人员。