Suppr超能文献

基于人体传感器网络的捷联式姿态估计:在人体运动中的应用。

Body sensor network-based strapdown orientation estimation: application to human locomotion.

作者信息

Misgeld Berno J E, Rüschen Daniel, Kim Saim, Leonhardt Steffen

出版信息

IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650480. doi: 10.1109/ICORR.2013.6650480.

Abstract

In this contribution, inertial and magnetic sensors are considered for real-time strapdown orientation tracking of human limb or robotic segment orientation. By using body sensor network integrated triaxial gyrometer, accelerometer, and magnetometer measurements, two orientation estimation filters are presented and subsequently designed for bias insensitive tracking of human gait. Both filters use quaternions for rotation representation, where preprocessing accelerometer and magnetometer data is conducted with the quaternion based estimation algorithm (QUEST) as a reference filter input. This results in a significant reduction of the complexity and calculation cost on the body sensor network. QUEST-based preprocessed attitude data is used for the designed extended Kalman filter (EKF) and a new complementary sliding mode observer. EKF-QUEST and complementary sliding mode observer are designed and tested in simulations and subsequently validated with a reference motion tracking system in treadmill tests.

摘要

在本论文中,惯性传感器和磁传感器被用于实时捷联式跟踪人体肢体或机器人部件的方向。通过使用集成了三轴陀螺仪、加速度计和磁力计测量的人体传感器网络,提出了两种方向估计滤波器,并随后设计用于对人类步态进行无偏跟踪。这两种滤波器都使用四元数来表示旋转,其中加速度计和磁力计数据的预处理是通过基于四元数的估计算法(QUEST)进行的,作为参考滤波器输入。这显著降低了人体传感器网络上的复杂度和计算成本。基于QUEST的预处理姿态数据被用于设计的扩展卡尔曼滤波器(EKF)和一种新的互补滑模观测器。EKF-QUEST和互补滑模观测器在仿真中进行了设计和测试,随后在跑步机测试中通过参考运动跟踪系统进行了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验