Suppr超能文献

复杂图像中的感知对比度。

Perceived contrast in complex images.

作者信息

Haun Andrew M, Peli Eli

机构信息

Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.

出版信息

J Vis. 2013 Nov 4;13(13):3. doi: 10.1167/13.13.3.

Abstract

To understand how different spatial frequencies contribute to the overall perceived contrast of complex, broadband photographic images, we adapted the classification image paradigm. Using natural images as stimuli, we randomly varied relative contrast amplitude at different spatial frequencies and had human subjects determine which images had higher contrast. Then, we determined how the random variations corresponded with the human judgments. We found that the overall contrast of an image is disproportionately determined by how much contrast is between 1 and 6 c/°, around the peak of the contrast sensitivity function (CSF). We then employed the basic components of contrast psychophysics modeling to show that the CSF alone is not enough to account for our results and that an increase in gain control strength toward low spatial frequencies is necessary. One important consequence of this is that contrast constancy, the apparent independence of suprathreshold perceived contrast and spatial frequency, will not hold during viewing of natural images. We also found that images with darker low-luminance regions tended to be judged as having higher overall contrast, which we interpret as the consequence of darker local backgrounds resulting in higher band-limited contrast response in the visual system.

摘要

为了理解不同空间频率如何对复杂的宽带摄影图像的整体感知对比度产生影响,我们采用了分类图像范式。以自然图像作为刺激物,我们随机改变不同空间频率下的相对对比度幅度,并让人类受试者判断哪些图像具有更高的对比度。然后,我们确定这些随机变化与人类判断之间的对应关系。我们发现,图像的整体对比度不成比例地取决于在对比度敏感度函数(CSF)峰值附近1至6周/度之间的对比度大小。然后,我们运用对比度心理物理学建模的基本要素来表明,仅CSF不足以解释我们的结果,并且有必要增强对低空间频率的增益控制强度。这一情况的一个重要后果是,在观看自然图像时,对比度恒常性(阈上感知对比度和空间频率的明显独立性)将不成立。我们还发现,低亮度区域较暗的图像往往被判断为具有更高的整体对比度,我们将其解释为较暗的局部背景导致视觉系统中带限对比度响应更高的结果。

相似文献

1
Perceived contrast in complex images.
J Vis. 2013 Nov 4;13(13):3. doi: 10.1167/13.13.3.
3
Visual discomfort and natural image statistics.
Perception. 2010;39(7):884-99. doi: 10.1068/p6656.
4
A comparison of vernier acuity for narrowband and broadband stimuli.
Spat Vis. 2004;17(1-2):111-26. doi: 10.1163/156856804322778297.
5
Spatial-frequency bandwidth of perceived contrast.
Vision Res. 1999 Oct;39(20):3399-403. doi: 10.1016/s0042-6989(99)00057-7.
6
Separation of edge detection and brightness perception.
Vision Res. 2004;44(16):1919-25. doi: 10.1016/j.visres.2004.03.005.
7
Spatial frequency and visual discomfort.
Vision Res. 2011 Aug 1;51(15):1767-77. doi: 10.1016/j.visres.2011.06.002. Epub 2011 Jun 13.
9
The perceived contrast of texture patches embedded in natural images.
Vision Res. 2006 Oct;46(19):3098-104. doi: 10.1016/j.visres.2006.04.014. Epub 2006 Jun 12.
10
Aging, senile miosis and spatial contrast sensitivity at low luminance.
Vision Res. 1988;28(11):1235-46. doi: 10.1016/0042-6989(88)90039-9.

引用本文的文献

1
Natural Contrast Statistics Facilitate Human Face Categorization.
eNeuro. 2022 Oct 6;9(5). doi: 10.1523/ENEURO.0420-21.2022. Print 2022 Sep-Oct.
3
Spatial structure, phase, and the contrast of natural images.
J Vis. 2022 Jan 4;22(1):4. doi: 10.1167/jov.22.1.4.
4
What is visible across the visual field?
Neurosci Conscious. 2021 Jun 1;2021(1):niab006. doi: 10.1093/nc/niab006. eCollection 2021.
5
Reversing the Luminance Polarity of Control Faces: Why Are Some Negative Faces Harder to Recognize, but Easier to See?
Front Psychol. 2021 Jan 21;11:609045. doi: 10.3389/fpsyg.2020.609045. eCollection 2020.
8
Dynamic properties of internal noise probed by modulating binocular rivalry.
PLoS Comput Biol. 2019 Jun 6;15(6):e1007071. doi: 10.1371/journal.pcbi.1007071. eCollection 2019 Jun.
9
Increasing the Complexity of the Illumination May Reduce Gloss Constancy.
Iperception. 2017 Dec 9;8(6):2041669517740369. doi: 10.1177/2041669517740369. eCollection 2017 Nov-Dec.

本文引用的文献

1
Using confidence intervals in within-subject designs.
Psychon Bull Rev. 1994 Dec;1(4):476-90. doi: 10.3758/BF03210951.
2
Adaptation to blurred and sharpened video.
J Vis. 2013 Jul 15;13(8):12. doi: 10.1167/13.8.12.
4
On the effectiveness of noise masks: naturalistic vs. un-naturalistic image statistics.
Vision Res. 2012 May 1;60:101-13. doi: 10.1016/j.visres.2012.03.017. Epub 2012 Mar 31.
6
Representation of surface luminance and contrast in primary visual cortex.
Cereb Cortex. 2012 Apr;22(4):776-87. doi: 10.1093/cercor/bhr133. Epub 2011 Jun 21.
7
Darks are processed faster than lights.
J Neurosci. 2011 Jun 8;31(23):8654-8. doi: 10.1523/JNEUROSCI.0504-11.2011.
8
Beyond multiple pattern analyzers modeled as linear filters (as classical V1 simple cells): useful additions of the last 25 years.
Vision Res. 2011 Jul 1;51(13):1397-430. doi: 10.1016/j.visres.2011.02.007. Epub 2011 Feb 15.
9
Response normalization and blur adaptation: data and multi-scale model.
J Vis. 2011 Feb 9;11(2):10.1167/11.2.7 7. doi: 10.1167/11.2.7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验