Département de Biologie, Service de Radioagronomie, C.E.N. Cadarache, F-13108, St. Paul Lez Durance Cédex, France.
Planta. 1991 Jan;183(2):150-7. doi: 10.1007/BF00197782.
In order to estimate photosynthetic and respiratory rates in illuminated photoautotrophic cells of carnation (Dianthus caryophyllus L.), simultaneous measurements of CO2 and O2 gas exchange were performed using (18)O2, (13)CO2 and a mass-spectrometry technique. This method allowed the determination, and thus the comparison, of unidirectional fluxes of O2 and CO2. In optimum photosynthetic conditions (i.e. in the presence of high light and a saturating level of CO2), the rate of CO2 influx represented 75±5% of the rate of gross O2 evolution. After a dark-to-light transition, the rate of CO2 efflux was inhibited by 50% whereas the O2-uptake rate was little affected. The effect of a recycling of respiratory CO2 through photosynthesis on the exchange of CO2 gas was investigated using a mathematical model. The confliction of the experimental data with the simulated gas-exchange rates strongly supported the view that CO2 recycling was a minor event in these cells and could not be responsible for the observed inhibition of CO2 efflux. On the basis of this assumption it was concluded that illumination of carnation cells resulted in a decrease of substrate decarboxylations, and that CO2 efflux and O2 uptake were not as tightly coupled in the light as in the dark. Furthermore, it could be calculated from the rate of gross photosynthesis that the chloroplastic electron-transport chain produced enough ATP in the light to account for the measured CO2-uptake rate without involving cyclic transfer of electrons around PS I or mitochondrial supplementation.
为了估算康乃馨(Dianthus caryophyllus L.)照光自养细胞的光合和呼吸速率,使用 (18)O2、(13)CO2 和质谱技术进行了 CO2 和 O2 气体交换的同时测量。该方法允许确定和比较 O2 和 CO2 的单向通量。在最佳光合条件下(即在强光和饱和 CO2 水平下),CO2 流入的速率代表总 O2 演化速率的 75±5%。暗转光后,CO2 流出的速率被抑制了 50%,而 O2 摄取速率几乎没有受到影响。通过光合作用使呼吸 CO2 再循环对 CO2 气体交换的影响使用数学模型进行了研究。实验数据与模拟气体交换率之间的冲突强烈支持了这样一种观点,即 CO2 再循环是这些细胞中的一个次要事件,不能解释观察到的 CO2 流出抑制。基于这一假设,可以得出结论,康乃馨细胞的光照导致底物脱羧作用减少,并且 CO2 流出和 O2 摄取在光下不如在暗中紧密耦合。此外,根据总光合作用的速率可以计算出,叶绿体电子传递链在光照下产生的 ATP 足以满足测量的 CO2 摄取速率,而无需涉及 PS I 周围电子的循环转移或线粒体补充。