Laboratoire de Physiologie Cellulaire et Végétale. Université Grenoble Alpes, CNRS, CEA, INRAe, Grenoble Cedex 9, 38054, France.
Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany.
New Phytol. 2021 Jul;231(1):326-338. doi: 10.1111/nph.17359. Epub 2021 May 1.
Galdieria sulphuraria is a cosmopolitan microalga found in volcanic hot springs and calderas. It grows at low pH in photoautotrophic (use of light as a source of energy) or heterotrophic (respiration as a source of energy) conditions, using an unusually broad range of organic carbon sources. Previous data suggested that G. sulphuraria cannot grow mixotrophically (simultaneously exploiting light and organic carbon as energy sources), its photosynthetic machinery being repressed by organic carbon. Here, we show that G. sulphuraria SAG21.92 thrives in photoautotrophy, heterotrophy and mixotrophy. By comparing growth, biomass production, photosynthetic and respiratory performances in these three trophic modes, we show that addition of organic carbon to cultures (mixotrophy) relieves inorganic carbon limitation of photosynthesis thanks to increased CO supply through respiration. This synergistic effect is lost when inorganic carbon limitation is artificially overcome by saturating photosynthesis with added external CO . Proteomic and metabolic profiling corroborates this conclusion suggesting that mixotrophy is an opportunistic mechanism to increase intracellular CO concentration under physiological conditions, boosting photosynthesis by enhancing the carboxylation activity of Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) and decreasing photorespiration. We discuss possible implications of these findings for the ecological success of Galdieria in extreme environments and for biotechnological applications.
硫氧还蛋白在世界范围内的微藻发现于火山温泉和破火山口。它在低 pH 值下生长在光合自养(使用光作为能源)或异养(呼吸作为能源)条件下,利用异常广泛的有机碳源。以前的数据表明,硫氧还蛋白不能混合营养生长(同时利用光和有机碳作为能源),其光合作用机制被有机碳抑制。在这里,我们表明硫氧还蛋白 SAG21.92 在光合自养、异养和混合营养中茁壮成长。通过比较这三种营养方式下的生长、生物量生产、光合作用和呼吸性能,我们表明向培养物中添加有机碳(混合营养)通过呼吸增加 CO 供应,从而缓解光合作用对无机碳的限制。当通过添加外部 CO 使光合作用饱和来人为克服无机碳限制时,这种协同作用就会丧失 。蛋白质组学和代谢组学分析证实了这一结论,表明混合营养是一种在生理条件下增加细胞内 CO 浓度的机会主义机制,通过增强核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)的羧化活性和减少光呼吸来促进光合作用。我们讨论了这些发现对硫氧还蛋白在极端环境中的生态成功和生物技术应用的可能影响。