Plant Biotechnology Group, Genetics and Microbiology Department, AFRC Institute of Food Research, Colney Lane, NR4 7UA, Norwich, UK.
Planta. 1991 Jan;183(2):196-201. doi: 10.1007/BF00197788.
The relative contributions made by the L-arginine/agmatine/N-carbamoylputrescine/putrescine and the L-ornithine/putrescine pathways to hyoscyamine formation have been investigated in a transformed root culture of Datura stramonium. The activity of either arginine decarboxylase (EC 4.1.1.19) or ornithine decarboxylase (EC 4.1.1.17) was suppressed in vivo by using the specific irreversible inhibitors of these activities, DL-α-difluoromethylarginine or DL-α-difluoromethylornithine, respectively. It was found that suppression of arginine decarboxylase resulted in a severe decrease in free and conjugated putrescine and in the putrescine-derived intermediates of hyoscyamine biosynthesis. In contrast, the suppression of ornithine decarboxylase activity stimulated an elevation of arginine decarboxylase and minimal loss of metabolites from the amine and alkaloid pools. The stimulation of arginine decarboxylase was not, however, sufficient to maintain the same potential rate of putrescine biosynthesis as in control tissue. It is concluded that (i) in Datura the two routes by which putrescine may be formed do not act in isolation from one another, (ii) arginine decarboxylase is the more important activity for hyoscyamine formation, and (iii) the formation of polyamines is favoured over the biosynthesis of tropane alkaloids. An interaction between putrescine metabolism and other amines is also indicated from a stimulation of tyramine accumulation seen at high levels of DL-α-difluoromethylornithine.
在颠茄(Datura stramonium)转化根培养物中,研究了 L-精氨酸/胍丁胺/N-碳酰腐胺/腐胺和 L-鸟氨酸/腐胺途径对莨菪碱形成的相对贡献。通过使用这些活性的特异性不可逆抑制剂,即 DL-α-二氟甲基精氨酸或 DL-α-二氟甲基鸟氨酸,分别在体内抑制精氨酸脱羧酶(EC 4.1.1.19)或鸟氨酸脱羧酶(EC 4.1.1.17)的活性。结果发现,抑制精氨酸脱羧酶导致游离和共轭腐胺以及莨菪碱生物合成中腐胺衍生中间产物严重减少。相比之下,鸟氨酸脱羧酶活性的抑制刺激了精氨酸脱羧酶的升高和胺和生物碱库中代谢物的最小损失。然而,精氨酸脱羧酶的刺激不足以维持与对照组织相同的腐胺生物合成潜在速率。结论是:(i)在颠茄中,两种可能形成腐胺的途径彼此之间不是孤立作用的,(ii)精氨酸脱羧酶是莨菪碱形成的更重要的活性,(iii)多胺的形成优先于托烷生物碱的生物合成。在高浓度 DL-α-二氟甲基鸟氨酸存在下,可见酪胺积累受到刺激,这表明腐胺代谢与其他胺之间存在相互作用。