Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel.
BMC Bioinformatics. 2013 Nov 7;14:319. doi: 10.1186/1471-2105-14-319.
Multi-cellular segmentation of bright field microscopy images is an essential computational step when quantifying collective migration of cells in vitro. Despite the availability of various tools and algorithms, no publicly available benchmark has been proposed for evaluation and comparison between the different alternatives.
A uniform framework is presented to benchmark algorithms for multi-cellular segmentation in bright field microscopy images. A freely available set of 171 manually segmented images from diverse origins was partitioned into 8 datasets and evaluated on three leading designated tools.
The presented benchmark resource for evaluating segmentation algorithms of bright field images is the first public annotated dataset for this purpose. This annotated dataset of diverse examples allows fair evaluations and comparisons of future segmentation methods. Scientists are encouraged to assess new algorithms on this benchmark, and to contribute additional annotated datasets.
在体外量化细胞的集体迁移时,明场显微镜图像的多细胞分割是一个基本的计算步骤。尽管有各种工具和算法可用,但尚未提出用于评估和比较不同替代方案的公开基准。
提出了一个统一的框架,用于对明场显微镜图像中的多细胞分割算法进行基准测试。一组来自不同来源的 171 张手动分割图像的免费数据集被分为 8 个数据集,并在三个领先的指定工具上进行了评估。
该基准资源用于评估明场图像的分割算法,是第一个为此目的提供的公共标注数据集。该数据集包含多种示例,可对未来的分割方法进行公平的评估和比较。鼓励科学家们在这个基准上评估新算法,并贡献额外的标注数据集。