Mathematical Sciences, Queensland University of Technology, Brisbane, Australia Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
Mathematical Sciences, Queensland University of Technology, Brisbane, Australia Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
J R Soc Interface. 2014 Aug 6;11(97):20140325. doi: 10.1098/rsif.2014.0325.
Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity D, and the cell proliferation rate λ. Scratch assays are a commonly reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched, and the motion of the front is monitored over a short period of time, often less than 24 h. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Use of leading edge data is very convenient because, unlike other methods, it is non-destructive and does not require labelling, tracking or counting individual cells among the population. In this work, we study short-time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allow us to reliably identify D and λ. Using a naive calibration approach where we simply scan the relevant region of the (D, λ) parameter space, we show that there are many choices of D and λ for which our model produces indistinguishable short-time leading edge data. Therefore, without due care, it is impossible to estimate D and λ from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information, we divide the duration of the experiment into two periods, and we estimate D using data from the first period, whereas we estimate λ using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of D and λ that are consistent with previously reported values except that that our approach is fast, inexpensive, non-destructive and avoids the need for cell labelling and cell counting.
移动的细胞前缘是伤口愈合、发育和疾病的一个基本特征。细胞前缘的移动速度部分取决于细胞的运动性,用细胞扩散率 D 和细胞增殖率 λ来量化。划痕实验是一种常用的方法,用于研究细胞前缘的运动,在该实验中,初始细胞单层被划痕,然后在短时间内监测前缘的运动,通常不到 24 小时。最简单的量化划痕实验的方法是监测前沿的进展。使用前沿数据非常方便,因为与其他方法不同,它是非破坏性的,不需要对群体中的单个细胞进行标记、跟踪或计数。在这项工作中,我们使用离散数学模型和自动化图像分析研究了划痕实验中的短期前沿数据,目的是研究这些数据是否能够可靠地识别 D 和 λ。使用一种简单的校准方法,即我们只需在(D,λ)参数空间的相关区域进行扫描,我们表明,有许多 D 和 λ 的选择,我们的模型产生了不可区分的短期前沿数据。因此,如果不小心,就不可能从这种数据中估计 D 和 λ。为了解决这个问题,我们提出了一种改进的方法,该方法考虑到细胞运动发生的时间尺度比增殖短得多。利用这些信息,我们将实验的持续时间分为两个阶段,并用第一阶段的数据来估计 D,用第二阶段的数据来估计 λ。我们使用计算机模拟数据和一组新的体外数据来验证我们方法的准确性,结果表明,除了我们的方法快速、廉价、非破坏性且不需要细胞标记和细胞计数之外,我们的方法还可以恢复与先前报道的值一致的 D 和 λ 的估计值。