IEEE Trans Med Imaging. 2018 Apr;37(4):929-940. doi: 10.1109/TMI.2017.2775604.
Automated cell segmentation and tracking is essential for dynamic studies of cellular morphology, movement, and interactions as well as other cellular behaviors. However, accurate, automated, and easy-to-use cell segmentation remains a challenge, especially in cases of high cell densities, where discrete boundaries are not easily discernable. Here, we present a fully automated segmentation algorithm that iteratively segments cells based on the observed distribution of optical cell volumes measured by quantitative phase microscopy. By fitting these distributions to known probability density functions, we are able to converge on volumetric thresholds that enable valid segmentation cuts. Since each threshold is determined from the observed data itself, virtually no input is needed from the user. We demonstrate the effectiveness of this approach over time using six cell types that display a range of morphologies, and evaluate these cultures over a range of confluencies. Facile dynamic measures of cell mobility and function revealed unique cellular behaviors that relate to tissue origins, state of differentiation, and real-time signaling. These will improve our understanding of multicellular communication and organization.
自动细胞分割和跟踪对于细胞形态、运动和相互作用以及其他细胞行为的动态研究至关重要。然而,准确、自动和易于使用的细胞分割仍然是一个挑战,特别是在细胞密度高的情况下,离散边界不容易识别。在这里,我们提出了一种完全自动化的分割算法,该算法基于定量相位显微镜测量的光学细胞体积的观察分布来迭代分割细胞。通过将这些分布拟合到已知的概率密度函数,我们能够收敛到能够实现有效分割的体积阈值。由于每个阈值都是根据观察到的数据本身确定的,因此几乎不需要用户输入。我们使用六种具有不同形态的细胞类型随时间展示了这种方法的有效性,并在不同的汇合度下评估了这些培养物。细胞迁移和功能的动态测量方法简单易行,揭示了与组织起源、分化状态和实时信号相关的独特细胞行为。这些将有助于我们理解细胞间的通讯和组织。