Suppr超能文献

酵母 Nrd1 的 RNA 聚合酶 II C 端结构域相互作用结构域有助于终止途径的选择,并通过核 exosome 与 RNA 加工偶联。

The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome.

机构信息

From the Center for RNA Research, Institute for Basic Science and.

出版信息

J Biol Chem. 2013 Dec 20;288(51):36676-90. doi: 10.1074/jbc.M113.508267. Epub 2013 Nov 6.

Abstract

The RNA polymerase II (RNApII) C-terminal domain (CTD)-interacting domain (CID) proteins are involved in two distinct RNApII termination pathways and recognize different phosphorylated forms of CTD. To investigate the role of differential CTD-CID interactions in the choice of termination pathway, we altered the CTD-binding specificity of Nrd1 by domain swapping. Nrd1 with the CID from Rtt103 (Nrd1(CID(Rtt103))) causes read-through transcription at many genes, but can also trigger termination where multiple Nrd1/Nab3-binding sites and the Ser(P)-2 CTD co-exist. Therefore, CTD-CID interactions target specific termination complexes to help choose an RNApII termination pathway. Interactions of Nrd1 with both CTD and nascent transcripts contribute to efficient termination by the Nrd1 complex. Surprisingly, replacing the Nrd1 CID with that from Rtt103 reduces binding to Rrp6/Trf4, and RNA transcripts terminated by Nrd1(CID(Rtt103)) are predominantly processed by core exosome. Thus, the Nrd1 CID couples Ser(P)-5 CTD not only to termination, but also to RNA processing by the nuclear exosome.

摘要

RNA 聚合酶 II(RNApII)C 端结构域(CTD)-相互作用结构域(CID)蛋白参与两种不同的 RNApII 终止途径,并识别 CTD 的不同磷酸化形式。为了研究 CTD-CID 相互作用的差异在终止途径选择中的作用,我们通过结构域交换改变了 Nrd1 的 CTD 结合特异性。具有 Rtt103 CID 的 Nrd1(Nrd1(CID(Rtt103)))导致许多基因的通读转录,但也可以在存在多个 Nrd1/Nab3 结合位点和 Ser(P)-2 CTD 时触发终止。因此,CTD-CID 相互作用将特定的终止复合物靶向特定的终止复合物,以帮助选择 RNApII 终止途径。Nrd1 与 CTD 和新生转录本的相互作用有助于 Nrd1 复合物的有效终止。令人惊讶的是,用 Rtt103 的 CID 替换 Nrd1 的 CID 会降低与 Rrp6/Trf4 的结合,并且由 Nrd1(CID(Rtt103))终止的 RNA 转录本主要由核心核酶体加工。因此,Nrd1 CID 不仅将 Ser(P)-5 CTD 与终止,还与核核酶体的 RNA 加工偶联。

相似文献

2
The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1-Nab3 pathway.
PLoS Genet. 2015 Feb 13;11(2):e1004999. doi: 10.1371/journal.pgen.1004999. eCollection 2015.
3
The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain.
Nat Struct Mol Biol. 2008 Aug;15(8):795-804. doi: 10.1038/nsmb.1468. Epub 2008 Jul 27.
5
Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts.
Mol Cell. 2006 Jan 20;21(2):239-48. doi: 10.1016/j.molcel.2005.11.028.
6
RNA Polymerase II CTD Tyrosine 1 Is Required for Efficient Termination by the Nrd1-Nab3-Sen1 Pathway.
Mol Cell. 2019 Feb 21;73(4):655-669.e7. doi: 10.1016/j.molcel.2018.12.002. Epub 2019 Jan 10.
7
A network of interdependent molecular interactions describes a higher order Nrd1-Nab3 complex involved in yeast transcription termination.
J Biol Chem. 2013 Nov 22;288(47):34158-34167. doi: 10.1074/jbc.M113.516765. Epub 2013 Oct 7.
8
The role of Ctk1 kinase in termination of small non-coding RNAs.
PLoS One. 2013 Dec 4;8(12):e80495. doi: 10.1371/journal.pone.0080495. eCollection 2013.
9
Identification of Three Sequence Motifs in the Transcription Termination Factor Sen1 that Mediate Direct Interactions with Nrd1.
Structure. 2019 Jul 2;27(7):1156-1161.e4. doi: 10.1016/j.str.2019.04.005. Epub 2019 May 16.
10
RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination.
PLoS Genet. 2020 Mar 18;16(3):e1008317. doi: 10.1371/journal.pgen.1008317. eCollection 2020 Mar.

引用本文的文献

4
Polyadenylated versions of small non-coding RNAs in are degraded by Rrp6p/Rrp47p independent of the core nuclear exosome.
Microb Cell. 2024 May 22;11:155-186. doi: 10.15698/mic2024.05.823. eCollection 2024.
5
Tho2-mediated escort of Nrd1 regulates the expression of aging-related genes.
Aging Cell. 2024 Aug;23(8):e14203. doi: 10.1111/acel.14203. Epub 2024 May 20.
6
The Nrd1-Nab3-Sen1 transcription termination complex from a structural perspective.
Biochem Soc Trans. 2023 Jun 28;51(3):1257-1269. doi: 10.1042/BST20221418.
7
Altered rRNA processing disrupts nuclear RNA homeostasis via competition for the poly(A)-binding protein Nab2.
Nucleic Acids Res. 2020 Nov 18;48(20):11675-11694. doi: 10.1093/nar/gkaa964.
9
A crucial RNA-binding lysine residue in the Nab3 RRM domain undergoes SET1 and SET3-responsive methylation.
Nucleic Acids Res. 2020 Apr 6;48(6):2897-2911. doi: 10.1093/nar/gkaa029.
10
Transcriptome maps of general eukaryotic RNA degradation factors.
Elife. 2019 May 28;8:e47040. doi: 10.7554/eLife.47040.

本文引用的文献

1
In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination.
EMBO J. 2012 Oct 3;31(19):3935-48. doi: 10.1038/emboj.2012.237. Epub 2012 Aug 28.
2
Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1.
Genes Dev. 2012 Sep 1;26(17):1891-6. doi: 10.1101/gad.192781.112. Epub 2012 Aug 14.
3
CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II.
Science. 2012 Jun 29;336(6089):1723-5. doi: 10.1126/science.1219651.
4
Updating the RNA polymerase CTD code: adding gene-specific layers.
Trends Genet. 2012 Jul;28(7):333-41. doi: 10.1016/j.tig.2012.03.007. Epub 2012 May 21.
8
RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing.
Science. 2011 Nov 4;334(6056):683-6. doi: 10.1126/science.1206034.
9
Distinct RNA degradation pathways and 3' extensions of yeast non-coding RNA species.
Transcription. 2011 May;2(3):145-154. doi: 10.4161/trns.2.3.16298.
10
Gene-specific RNA polymerase II phosphorylation and the CTD code.
Nat Struct Mol Biol. 2010 Oct;17(10):1279-86. doi: 10.1038/nsmb.1913. Epub 2010 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验