Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
J Biol Chem. 2013 Nov 22;288(47):34158-34167. doi: 10.1074/jbc.M113.516765. Epub 2013 Oct 7.
Nab3 and Nrd1 are yeast heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins that heterodimerize and bind RNA. Genetic and biochemical evidence reveals that they are integral to the termination of transcription of short non-coding RNAs by RNA polymerase II. Here we define a Nab3 mutation (nab3Δ134) that removes an essential part of the protein's C terminus but nevertheless can rescue, in trans, the phenotype resulting from a mutation in the RNA recognition motif of Nab3. This low complexity region of Nab3 appears intrinsically unstructured and can form a hydrogel in vitro. These data support a model in which multiple Nrd1-Nab3 heterodimers polymerize onto substrate RNA to effect termination, allowing complementation of one mutant Nab3 molecule by another lacking a different function. The self-association property of Nab3 adds to the previously documented interactions between these hnRNP-like proteins, RNA polymerase II, and the nascent transcript, leading to a network of nucleoprotein interactions that define a higher order Nrd1-Nab3 complex. This was underscored from the synthetic phenotypes of yeast strains with pairwise combinations of Nrd1 and Nab3 mutations known to affect their distinct biochemical activities. The mutations included a Nab3 self-association defect, a Nab3-Nrd1 heterodimerization defect, a Nrd1-polymerase II binding defect, and an Nab3-RNA recognition motif mutation. Although no single mutation was lethal, cells with any two mutations were not viable for four such pairings, and a fifth displayed a synthetic growth defect. These data strengthen the idea that a multiplicity of interactions is needed to assemble a higher order Nrd1-Nab3 complex that coats specific nascent RNAs in preparation for termination.
Nab3 和 Nrd1 是酵母异质核核糖核蛋白(hnRNP)样蛋白,它们异二聚化并结合 RNA。遗传和生化证据表明,它们是 RNA 聚合酶 II 转录短非编码 RNA 终止所必需的。在这里,我们定义了一个 Nab3 突变(nab3Δ134),它去除了该蛋白 C 端的一个必需部分,但仍然可以在 Nab3 RNA 识别模体突变的表型中拯救。Nab3 的这个低复杂度区域似乎是固有无结构的,并可以在体外形成水凝胶。这些数据支持这样一种模型,即多个 Nrd1-Nab3 异二聚体聚合到底物 RNA 上以实现终止,从而允许另一个缺乏不同功能的 Nab3 突变分子互补。Nab3 的自缔合特性增加了这些 hnRNP 样蛋白、RNA 聚合酶 II 和新生转录本之间以前记录的相互作用,导致核蛋白相互作用网络,定义了更高阶的 Nrd1-Nab3 复合物。这一点从酵母菌株的合成表型中得到了强调,这些菌株具有已知影响其不同生化活性的 Nrd1 和 Nab3 突变的两两组合。这些突变包括 Nab3 自缔合缺陷、Nab3-Nrd1 异二聚化缺陷、Nrd1-聚合酶 II 结合缺陷和 Nab3-RNA 识别模体突变。虽然没有单个突变是致命的,但任何两个突变的细胞在四个这样的配对中都不能存活,第五个表现出合成生长缺陷。这些数据加强了这样一种观点,即需要多种相互作用来组装一个更高阶的 Nrd1-Nab3 复合物,该复合物在为终止做准备时覆盖特定的新生 RNA。