Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany ; Leibniz Graduate School of Aging, Leibniz Institute for Age Research, Fritz-Lipmann-Institute, Jena D-07745, Germany.
Mol Metab. 2013 Feb 14;2(2):92-102. doi: 10.1016/j.molmet.2013.02.002. eCollection 2013.
Dietary restriction (DR) extends lifespan and promotes metabolic health in evolutionary distinct species. DR is widely believed to promote longevity by causing an energy deficit leading to increased mitochondrial respiration. We here show that inhibitors of mitochondrial complex I promote physical activity, stress resistance as well as lifespan of Caenorhabditis elegans despite normal food uptake, i.e. in the absence of DR. However, complex I inhibition does not further extend lifespan in dietarily restricted nematodes, indicating that impaired complex I activity mimics DR. Promotion of longevity due to complex I inhibition occurs independently of known energy sensors, including DAF-16/FoxO, as well as AAK-2/AMPK and SIR-2.1/sirtuins, or both. Consistent with the concept of mitohormesis, complex I inhibition transiently increases mitochondrial formation of reactive oxygen species (ROS) that activate PMK-1/p38 MAP kinase and SKN-1/NRF-2. Interference with this retrograde redox signal as well as ablation of two redox-sensitive neurons in the head of the worm similarly prevents extension of lifespan. These findings unexpectedly indicate that DR extends organismal lifespan through transient neuronal ROS signaling rather than sensing of energy depletion, providing unexpected pharmacological options to promote exercise capacity and healthspan despite unaltered eating habits.
饮食限制(DR)延长了进化上不同物种的寿命并促进了代谢健康。人们普遍认为,DR 通过导致能量亏缺从而增加线粒体呼吸来促进长寿。我们在这里表明,尽管正常进食,即不存在 DR 情况下,线粒体复合物 I 的抑制剂也能促进秀丽隐杆线虫的体力活动、抗应激能力和寿命。然而,复合物 I 抑制并不能进一步延长饮食受限线虫的寿命,这表明受损的复合物 I 活性模拟了 DR。由于复合物 I 抑制而导致的寿命延长与已知的能量感受器无关,包括 DAF-16/FoxO、AAK-2/AMPK 和 SIR-2.1/sirtuins 或两者均无关。与线粒体激素假说一致,复合物 I 抑制会短暂增加线粒体中活性氧物质(ROS)的形成,从而激活 PMK-1/p38 MAP 激酶和 SKN-1/NRF-2。干扰这种逆行氧化还原信号以及破坏蠕虫头部的两个氧化还原敏感神经元同样可以防止寿命延长。这些发现出人意料地表明,DR 通过短暂的神经元 ROS 信号传递而不是能量耗竭的感知来延长生物体的寿命,为促进运动能力和健康寿命提供了意外的药物选择,而无需改变饮食习惯。