Suppr超能文献

用于乙酰氨基酚和非那西汀超灵敏电化学传感的石墨烯-过渡金属氧化物纳米复合材料的简便新颖电化学制备。

Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin.

机构信息

Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China.

出版信息

Nanoscale. 2014 Jan 7;6(1):207-14. doi: 10.1039/c3nr03620k. Epub 2013 Nov 8.

Abstract

A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 μM for AC and 0.06 to 10 μM for PCT with high sensitivities of 54,295.82 μA mM(-1) cm(2) for AC and 21,344.66 μA mM(-1) cm(2) for PCT, respectively. Moreover, the practical applicability was validated to be reliable and desirable in pharmaceutical detections. The excellent results showed the promise of the proposed preparation strategy of EGR-transition metal oxide nanocomposite in the field of electroanalytical chemistry.

摘要

一种基于电化学技术的简便、新颖的制备策略,用于制备电沉积石墨烯(EGR)和氧化锌(ZnO)纳米复合材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(XPS)和拉曼光谱研究了 EGR 基纳米复合材料的形貌和结构。同时,通过循环伏安法(CV)和电化学阻抗谱(EIS)对纳米复合材料的电化学性能进行了研究。由于 EGR 和 ZnO 纳米粒子的协同作用,成功制备了用于检测扑热息痛(AC)和非那西汀(PCT)的超灵敏电化学传感器。AC 的线性范围为 0.02 至 10 μM,灵敏度为 54,295.82 μA mM(-1) cm(2);PCT 的线性范围为 0.06 至 10 μM,灵敏度为 21,344.66 μA mM(-1) cm(2)。此外,在药物检测中验证了其实际应用的可靠性和可行性。优异的结果表明,所提出的 EGR-过渡金属氧化物纳米复合材料的制备策略在电分析化学领域具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验