Department of Pharmaceutical Sciences, University of Antwerp, B-2610, Antwerpen (Wilrijk), Belgium.
J Am Soc Mass Spectrom. 1996 Feb;7(2):173-81. doi: 10.1016/1044-0305(95)00636-2.
Four aglycons (tomatidine, demissidine, solanidine, and solasodine) and three glycoalkaloids (α-tomatine, α-chaconine, and α-solanine) have been analyzed by positive ion liquid secondary ion high-energy and low-energy collision-induced dissociation (CID) tandem mass Spectrometry, performed on a four-sector (EBEB) and a hybrid (EBQQ) instrument, respectively. Both high- and low-energy collision-induced dissociation mass spectra of M+H ions of these compounds provided structural information that aided the characterization of the different aglycons and of the carbohydrate sequence and linkage sites in the glycoalkaloids. Low-energy CID favors charge-driven fragmentation of the aglycon rings, whilst high-energy CID spectra are more complex and contain additional ions that appear to result from charge-remote fragmentations, multiple cleavages, or complex charge-driven rearrangements. With respect to the structural characterization of the carbohydrate part, low-energy CID fragmentations of sugar residues in the glycoalkaloids generate Y n (+) ions and some low intensity Z n (+) ions; the high-energy spectra also exhibit strong (1,5)X n (+) ions, formed by multiple cleavage of the sugar ring, and significant Z n (+) ions.
四种糖苷配基(番茄苷、毛叶冬珊瑚苷、茄碱和澳洲茄碱)和三种糖生物碱(α-茄碱、α-卡茄碱和α-龙葵碱)已通过正离子液相二次离子高能和低能碰撞诱导解离(CID)串联质谱进行分析,分别在四极杆(EBEB)和混合(EBQQ)仪器上进行。这些化合物的[M+H]+离子的高和低能 CID 质谱都提供了结构信息,有助于鉴定不同的糖苷配基以及糖生物碱中的碳水化合物序列和连接位点。低能 CID 有利于糖苷配基环的电荷驱动碎裂,而高能 CID 谱则更为复杂,包含额外的似乎是由电荷远程碎裂、多次裂解或复杂的电荷驱动重排产生的离子。就碳水化合物部分的结构表征而言,糖生物碱中糖残基的低能 CID 碎裂生成 Yn+()离子和一些低强度 Zn+()离子;高能谱还显示由糖环多次裂解形成的强(1,5)Xn+()离子和重要的 Zn+()离子。