Suppr超能文献

多孔透明质酸水凝胶在小鼠体内的非病毒 DNA 递送。

Non-viral DNA delivery from porous hyaluronic acid hydrogels in mice.

出版信息

Biomaterials. 2014 Jan;35(2):825-35. doi: 10.1016/j.biomaterials.2013.10.014.

Abstract

The lack of vascularization within tissue-engineered constructs remains the primary cause of construct failure following implantation. Porous constructs have been successful in allowing for vessel infiltration without requiring extensive matrix degradation. We hypothesized that the rate and maturity of infiltrating vessels could be enhanced by complementing the open pore structure with the added delivery of DNA encoding for angiogenic growth factors. Both 100 and 60 μm porous and non-porous hyaluronic acid hydrogels loaded with pro-angiogenic (pVEGF) or reporter (pGFPluc) plasmid nanoparticles were used to study the effects of pore size and DNA delivery on angiogenesis in a mouse subcutaneous implant model. GFP-expressing transfected cells were found inside all control hydrogels over the course of the study, although transfection levels peaked by week 3 for 100 and 60 μm porous hydrogels. Transfection in non-porous hydrogels continued to increase over time corresponding with continued surface degradation. pVEGF transfection levels were not high enough to enhance angiogenesis by increasing vessel density, maturity, or size, although by 6 weeks for all pore size hydrogels more hydrogel implants were positive for vascularization when pVEGF polyplexes were incorporated compared to control hydrogels. Pore size was found to be the dominant factor in determining the angiogenic response with 60 μm porous hydrogels having more vessels/area present than 100 μm porous hydrogels at the initial onset of angiogenesis at 3 weeks. The results of this study show promise for the use of polyplex loaded porous hydrogels to transfect infiltrating cells in vivo and guide tissue regeneration and repair.

摘要

组织工程构建物内缺乏血管生成仍然是植入后构建物失败的主要原因。多孔构建物已成功允许血管渗透,而无需广泛的基质降解。我们假设,通过补充开放孔结构并添加编码血管生成生长因子的 DNA 来输送,可以增强渗透血管的速度和成熟度。将载有促血管生成(pVEGF)或报告(pGFPluc)质粒纳米颗粒的 100 和 60 μm 多孔和非多孔透明质酸水凝胶用于研究孔大小和 DNA 输送对小鼠皮下植入模型中血管生成的影响。在整个研究过程中,发现 GFP 表达转染细胞存在于所有对照水凝胶中,尽管在第 3 周时,100 和 60 μm 多孔水凝胶中的转染水平达到峰值。非多孔水凝胶中的转染水平随着表面降解的持续而持续增加。pVEGF 转染水平不足以通过增加血管密度、成熟度或大小来增强血管生成,尽管对于所有孔大小的水凝胶,与对照水凝胶相比,在 6 周时,当掺入 pVEGF 多聚物时,更多的水凝胶植入物对血管化呈阳性。发现孔大小是决定血管生成反应的主要因素,在血管生成开始的第 3 周时,60 μm 多孔水凝胶的血管/面积比 100 μm 多孔水凝胶更多。这项研究的结果表明,使用载有多聚物的多孔水凝胶在体内转染渗透细胞并指导组织再生和修复具有很大的潜力。

相似文献

1
Non-viral DNA delivery from porous hyaluronic acid hydrogels in mice.
Biomaterials. 2014 Jan;35(2):825-35. doi: 10.1016/j.biomaterials.2013.10.014.
2
Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model.
Adv Healthc Mater. 2015 May;4(7):1084-91. doi: 10.1002/adhm.201400783. Epub 2015 Feb 18.
3
Design and characterization of microporous hyaluronic acid hydrogels for in vitro gene transfer to mMSCs.
Acta Biomater. 2012 Nov;8(11):3921-31. doi: 10.1016/j.actbio.2012.07.014. Epub 2012 Jul 20.
4
Chemical sintering generates uniform porous hyaluronic acid hydrogels.
Acta Biomater. 2014 Jan;10(1):205-13. doi: 10.1016/j.actbio.2013.10.002. Epub 2013 Oct 9.
5
Encapsulation of PEGylated low-molecular-weight PEI polyplexes in hyaluronic acid hydrogels reduces aggregation.
Acta Biomater. 2015 Dec;28:45-54. doi: 10.1016/j.actbio.2015.09.020. Epub 2015 Sep 21.
6
Non-viral vector delivery from PEG-hyaluronic acid hydrogels.
J Control Release. 2007 Jul 31;120(3):233-41. doi: 10.1016/j.jconrel.2007.04.015. Epub 2007 May 1.
7
Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels.
Mol Pharm. 2011 Oct 3;8(5):1582-91. doi: 10.1021/mp200171d. Epub 2011 Aug 24.
9
DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach.
Biomaterials. 2005 May;26(13):1575-84. doi: 10.1016/j.biomaterials.2004.05.007.
10
Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration.
Acta Biomater. 2018 Sep 1;77:155-171. doi: 10.1016/j.actbio.2018.07.035. Epub 2018 Jul 18.

引用本文的文献

1
Emerging scaffold- and cellular-based strategies for brain tissue regeneration and imaging.
In Vitro Model. 2022 Mar 17;1(2):129-150. doi: 10.1007/s44164-022-00013-0. eCollection 2022 Apr.
2
3
VEGF-Encoding, Gene-Activated Collagen-Based Matrices Promote Blood Vessel Formation and Improved Wound Repair.
ACS Appl Mater Interfaces. 2023 Apr 5;15(13):16434-16447. doi: 10.1021/acsami.2c23022. Epub 2023 Mar 24.
4
Design Challenges in Polymeric Scaffolds for Tissue Engineering.
Front Bioeng Biotechnol. 2021 Jun 14;9:617141. doi: 10.3389/fbioe.2021.617141. eCollection 2021.
6
Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing.
Int J Nanomedicine. 2020 Dec 3;15:9717-9743. doi: 10.2147/IJN.S276001. eCollection 2020.
7
Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches-An Overview.
Pharmaceutics. 2020 Aug 10;12(8):752. doi: 10.3390/pharmaceutics12080752.
8
Injectable, Hyaluronic Acid-Based Scaffolds with Macroporous Architecture for Gene Delivery.
Cell Mol Bioeng. 2019 Sep 4;12(5):399-413. doi: 10.1007/s12195-019-00593-0. eCollection 2019 Oct.
9
Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration.
Adv Drug Deliv Rev. 2019 Sep-Oct;149-150:95-106. doi: 10.1016/j.addr.2019.08.005. Epub 2019 Aug 14.
10
Bioprinting of Vascularized Tissue Scaffolds: Influence of Biopolymer, Cells, Growth Factors, and Gene Delivery.
J Healthc Eng. 2019 Apr 2;2019:9156921. doi: 10.1155/2019/9156921. eCollection 2019.

本文引用的文献

1
Design and characterization of microporous hyaluronic acid hydrogels for in vitro gene transfer to mMSCs.
Acta Biomater. 2012 Nov;8(11):3921-31. doi: 10.1016/j.actbio.2012.07.014. Epub 2012 Jul 20.
2
Hydrogel macroporosity and the prolongation of transgene expression and the enhancement of angiogenesis.
Biomaterials. 2012 Oct;33(30):7412-21. doi: 10.1016/j.biomaterials.2012.06.081. Epub 2012 Jul 15.
3
Vascularization in tissue engineering: angiogenesis versus inosculation.
Eur Surg Res. 2012;48(2):85-92. doi: 10.1159/000336876. Epub 2012 Mar 28.
4
Increased matrix synthesis by fibroblasts with decreased proliferation on synthetic chitosan-gelatin porous structures.
Biotechnol Bioeng. 2012 May;109(5):1314-25. doi: 10.1002/bit.24396. Epub 2011 Dec 13.
5
Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels.
Mol Pharm. 2011 Oct 3;8(5):1582-91. doi: 10.1021/mp200171d. Epub 2011 Aug 24.
6
Increased hyaluronan fragmentation during pulmonary ischemia.
Am J Physiol Lung Cell Mol Physiol. 2011 Nov;301(5):L782-8. doi: 10.1152/ajplung.00079.2011. Epub 2011 Aug 5.
7
The role of pore size on vascularization and tissue remodeling in PEG hydrogels.
Biomaterials. 2011 Sep;32(26):6045-51. doi: 10.1016/j.biomaterials.2011.04.066. Epub 2011 Jun 12.
8
Molecular mechanisms and clinical applications of angiogenesis.
Nature. 2011 May 19;473(7347):298-307. doi: 10.1038/nature10144.
9
Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness.
Biotechnol Bioeng. 2011 May;108(5):1181-93. doi: 10.1002/bit.23027. Epub 2011 Jan 15.
10
Vascularization is the key challenge in tissue engineering.
Adv Drug Deliv Rev. 2011 Apr 30;63(4-5):300-11. doi: 10.1016/j.addr.2011.03.004. Epub 2011 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验