Suppr超能文献

基于图割方法的宫颈细胞图像细胞质分割

Cytoplasm segmentation on cervical cell images using graph cut-based approach.

作者信息

Zhang Ling, Kong Hui, Chin Chien Ting, Wang Tianfu, Chen Siping

机构信息

Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen 518060, China Guangdong Key Laboratory of Biomedical Information Detection and Ultrasound Imaging, Shenzhen 518060, China.

出版信息

Biomed Mater Eng. 2014;24(1):1125-31. doi: 10.3233/BME-130912.

Abstract

This paper proposes a method to segment the cytoplasm in cervical cell images using graph cut-based algorithm. First, the A* channel in CIE LAB color space is extracted for contrast enhancement. Then, in order to effectively extract cytoplasm boundaries when image histograms present non-bimodal distribution, Otsu multiple thresholding is performed on the contrast enhanced image to generate initial segments, based on which the segments are refined by the multi-way graph cut method. We use 21 cervical cell images with non-ideal imaging condition to evaluate cytoplasm segmentation performance. The proposed method achieved a 93% accuracy which outperformed state-of-the-art works.

摘要

本文提出了一种基于图割算法对宫颈细胞图像中的细胞质进行分割的方法。首先,提取CIE LAB颜色空间中的A*通道以增强对比度。然后,为了在图像直方图呈现非双峰分布时有效提取细胞质边界,对对比度增强后的图像进行大津多阈值处理以生成初始分割段,并在此基础上通过多路图割方法对分割段进行细化。我们使用21张成像条件不理想的宫颈细胞图像来评估细胞质分割性能。所提出的方法达到了93%的准确率,优于现有技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验