Suppr超能文献

哺乳动物细胞周期网络的动力学和拓扑鲁棒性:一种逆向工程方法。

Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach.

作者信息

Ruz Gonzalo A, Goles Eric, Montalva Marco, Fogel Gary B

机构信息

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal Las Torres 2640, Santiago, Chile.

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal Las Torres 2640, Santiago, Chile.

出版信息

Biosystems. 2014 Jan;115:23-32. doi: 10.1016/j.biosystems.2013.10.007. Epub 2013 Nov 6.

Abstract

A common gene regulatory network model is the threshold Boolean network, used for example to model the Arabidopsis thaliana floral morphogenesis network or the fission yeast cell cycle network. In this paper, we analyze a logical model of the mammalian cell cycle network and its threshold Boolean network equivalent. Firstly, the robustness of the network was explored with respect to update perturbations, in particular, what happened to the attractors for all the deterministic updating schemes. Results on the number of different limit cycles, limit cycle lengths, basin of attraction size, for all the deterministic updating schemes were obtained through mathematical and computational tools. Secondly, we analyzed the topology robustness of the network, by reconstructing synthetic networks that contained exactly the same attractors as the original model by means of a swarm intelligence approach. Our results indicate that networks may not be very robust given the great variety of limit cycles that a network can obtain depending on the updating scheme. In addition, we identified an omnipresent network with interactions that match with the original model as well as the discovery of new interactions. The techniques presented in this paper are general, and can be used to analyze other logical or threshold Boolean network models of gene regulatory networks.

摘要

一种常见的基因调控网络模型是阈值布尔网络,例如用于对拟南芥花形态发生网络或裂殖酵母细胞周期网络进行建模。在本文中,我们分析了哺乳动物细胞周期网络的逻辑模型及其等效的阈值布尔网络。首先,针对更新扰动探索了网络的鲁棒性,特别是对于所有确定性更新方案,吸引子会发生什么变化。通过数学和计算工具获得了所有确定性更新方案的不同极限环数量、极限环长度、吸引域大小等结果。其次,我们通过群体智能方法重建了与原始模型具有完全相同吸引子的合成网络,分析了网络的拓扑鲁棒性。我们的结果表明,鉴于网络根据更新方案可以获得的大量不同极限环,网络可能不是非常鲁棒。此外,我们识别出一个无所不在的网络,其相互作用与原始模型匹配,同时还发现了新的相互作用。本文提出的技术具有通用性,可用于分析基因调控网络的其他逻辑或阈值布尔网络模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验