Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Phys Chem Chem Phys. 2014 Jan 7;16(1):95-102. doi: 10.1039/c3cp53272k.
The adsorption of group IV atoms (C, Si, Ge, Sn) on the magnetite Fe3O4(100) surface is investigated by density functional theory calculations. All these atoms prefer to bond to the surface oxygen atom which has no tetrahedral Fe(A) neighbor. The spin-up surface states of clean Fe3O4(100) are completely removed and half-metallicity is recovered by C adsorption. The spin-up band gap of the C-adsorbed Fe3O4(100) surface is wider than that of the H-adsorbed one and closer to the value of bulk Fe3O4. For the adsorption of other group IV atoms, the adsorbate-substrate interaction decreases and the adsorbate-adsorbate interaction increases with the increase of atomic number Z. As a consequence, the spin polarization varies from -99.4% (C adsorption) to +44.2% (Sn adsorption) for the electronic states of the adsorbed atom integrated from -0.5 eV to the Fermi level. The ability to tune the surface spin polarization by the choice of adsorbate is of significance for magnetite-based spintronic devices.
通过密度泛函理论计算研究了 IV 族原子(C、Si、Ge、Sn)在磁铁矿 Fe3O4(100)表面的吸附。所有这些原子都倾向于与没有四面体 Fe(A)近邻的表面氧原子键合。C 吸附完全去除了清洁 Fe3O4(100)的自旋向上表面态,并恢复了半金属性。C 吸附的 Fe3O4(100)表面的自旋向上能带隙比 H 吸附的更宽,并且更接近体相 Fe3O4 的值。对于其他 IV 族原子的吸附,随着原子序数 Z 的增加,吸附物-衬底相互作用减小,而吸附物-吸附物相互作用增加。因此,对于从 -0.5 eV 到费米能级积分的吸附原子的电子态,自旋极化从 -99.4%(C 吸附)变化到+44.2%(Sn 吸附)。通过选择吸附剂来调整表面自旋极化的能力对于基于磁铁矿的自旋电子器件具有重要意义。