MG DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
J Antibiot (Tokyo). 2014 Jan;67(1):31-41. doi: 10.1038/ja.2013.117. Epub 2013 Nov 13.
Glycopeptides such as vancomycin, teicoplanin and telavancin are essential for treating infections caused by Gram-positive bacteria. Unfortunately, the dwindled pipeline of new antibiotics into the market and the emergence of glycopeptide-resistant enterococci and other resistant bacteria are increasingly making effective antibiotic treatment difficult. We have now learned a great deal about how bacteria produce antibiotics. This information can be exploited to develop the next generation of antimicrobials. The biosynthesis of glycopeptides via nonribosomal peptide assembly and unusual amino acid synthesis, crosslinking and tailoring enzymes gives rise to intricate chemical structures that target the bacterial cell wall. This review seeks to describe recent advances in our understanding of both biosynthesis and resistance of these important antibiotics.
糖肽类抗生素,如万古霉素、替考拉宁和特拉万星,对于治疗革兰氏阳性菌感染至关重要。不幸的是,新抗生素进入市场的渠道减少,以及耐糖肽肠球菌和其他耐药菌的出现,使得有效的抗生素治疗变得越来越困难。我们现在已经了解了很多关于细菌产生抗生素的知识。这些信息可以被利用来开发下一代的抗菌药物。糖肽类抗生素通过非核糖体肽装配和不寻常的氨基酸合成、交联和修饰酶的作用而产生,其复杂的化学结构靶向细菌细胞壁。本文综述了近年来对这些重要抗生素的生物合成和耐药性的研究进展。