Voitsekhovskaia Irina, Ho Y T Candace, Klatt Christoph, Müller Anna, Machell Daniel L, Tan Yi Jiun, Triesman Maxine, Bingel Mara, Schittenhelm Ralf B, Tailhades Julien, Kulik Andreas, Maier Martin E, Otting Gottfried, Wohlleben Wolfgang, Schneider Tanja, Cryle Max, Stegmann Evi
Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
RSC Chem Biol. 2024 Aug 12;5(10):1017-34. doi: 10.1039/d4cb00140k.
Glycopeptide antibiotics (GPAs) are peptide natural products used as last resort treatments for antibiotic resistant bacterial infections. They are produced by the sequential activities of a linear nonribosomal peptide synthetase (NRPS), which assembles the heptapeptide core of GPAs, and cytochrome P450 (Oxy) enzymes, which perform a cascade of cyclisation reactions. The GPAs contain proteinogenic and nonproteinogenic amino acids, including phenylglycine residues such as 4-hydroxyphenylglycine (Hpg). The ability to incorporate non-proteinogenic amino acids in such peptides is a distinctive feature of the modular architecture of NRPSs, with each module selecting and incorporating a desired amino acid. Here, we have exploited this ability to produce and characterise GPA derivatives containing fluorinated phenylglycine (F-Phg) residues through a combination of mutasynthesis, biochemical, structural and bioactivity assays. Our data indicate that the incorporation of F-Phg residues is limited by poor acceptance by the NRPS machinery, and that the phenol moiety normally present on Hpg residues is essential to ensure both acceptance by the NRPS and the sequential cyclisation activity of Oxy enzymes. The principles learnt here may prove useful for the future production of GPA derivatives with more favourable properties through mixed feeding mutasynthesis approaches.
糖肽类抗生素(GPAs)是一类肽类天然产物,用作抗抗生素耐药细菌感染的最后手段治疗药物。它们由线性非核糖体肽合成酶(NRPS)的一系列活动产生,NRPS组装GPAs的七肽核心,以及细胞色素P450(Oxy)酶,后者进行一系列环化反应。GPAs包含蛋白质原性和非蛋白质原性氨基酸,包括苯甘氨酸残基,如4-羟基苯甘氨酸(Hpg)。在这类肽中掺入非蛋白质原性氨基酸的能力是NRPS模块化结构的一个显著特征,每个模块选择并掺入所需的氨基酸。在这里,我们利用这种能力,通过诱变合成、生化、结构和生物活性测定相结合的方法,生产并表征了含有氟化苯甘氨酸(F-Phg)残基的GPA衍生物。我们的数据表明,F-Phg残基的掺入受到NRPS机制接受性差的限制,并且Hpg残基上通常存在的酚部分对于确保NRPS的接受性和Oxy酶的顺序环化活性至关重要。这里学到的原理可能对未来通过混合补料诱变合成方法生产具有更有利性质的GPA衍生物有用。