Suppr超能文献

一种用于检测糖尿病性黄斑水肿的新型色觉测试。

A novel color vision test for detection of diabetic macular edema.

机构信息

Department of Ophthalmology, Hallym University College of Medicine, Seoul, Korea.

出版信息

Invest Ophthalmol Vis Sci. 2014 Jan 2;55(1):25-32. doi: 10.1167/iovs.13-11698.

Abstract

PURPOSE

To determine the sensitivity of the Seoul National University (SNU) computerized color vision test for detecting diabetic macular edema.

METHODS

From May to September 2003, a total of 73 eyes of 73 patients with diabetes mellitus were examined using the SNU computerized color vision test and optical coherence tomography (OCT). Color deficiency was quantified as the total error score on the SNU test and as error scores for each of four color quadrants corresponding to yellows (Q1), greens (Q2), blues (Q3), and reds (Q4). SNU error scores were assessed as a function of OCT foveal thickness and total macular volume (TMV).

RESULTS

The error scores in Q1, Q2, Q3, and Q4 measured by the SNU color vision test increased with foveal thickness (P < 0.05), whereas they were not correlated with TMV. Total error scores, the summation of Q1 and Q3, the summation of Q2 and Q4, and blue-yellow (B-Y) error scores were significantly correlated with foveal thickness (P < 0.05), but not with TMV.

CONCLUSIONS

The observed correlation between SNU color test error scores and foveal thickness indicates that the SNU test may be useful for detection and monitoring of diabetic macular edema.

摘要

目的

确定首尔国立大学(SNU)计算机化色觉测试检测糖尿病性黄斑水肿的敏感性。

方法

2003 年 5 月至 9 月,对 73 例糖尿病患者的 73 只眼进行了 SNU 计算机化色觉测试和光学相干断层扫描(OCT)检查。色觉缺失程度通过 SNU 测试的总误差评分以及与黄色(Q1)、绿色(Q2)、蓝色(Q3)和红色(Q4)四个色区相对应的误差评分来量化。SNU 误差评分与 OCT 中心凹厚度和总黄斑体积(TMV)相关。

结果

SNU 色觉测试中 Q1、Q2、Q3 和 Q4 的误差评分随中心凹厚度增加而增加(P<0.05),但与 TMV 无关。总误差评分、Q1 和 Q3 的总和、Q2 和 Q4 的总和以及蓝-黄(B-Y)误差评分与中心凹厚度显著相关(P<0.05),但与 TMV 无关。

结论

SNU 色觉测试误差评分与中心凹厚度之间的观察相关性表明,SNU 测试可能有助于糖尿病性黄斑水肿的检测和监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验