School of Physics, University of New South Wales , Sydney, NSW 2052, Australia.
ACS Nano. 2013 Dec 23;7(12):11310-6. doi: 10.1021/nn4051634. Epub 2013 Nov 13.
The achievement of controlled high n-type doping in Ge will enable the fabrication of a number of innovative nanoelectronic and photonic devices. In this work, we present a combined scanning tunneling microscopy, secondary ions mass spectrometry, and magnetotransport study to understand the atomistic doping process of Ge by P2 molecules. Harnessing the one-dimer footprint of P2 molecules on the Ge(001) surface, we achieved the incorporation of a full P monolayer in Ge using a relatively low process temperature. The consequent formation of P-P dimers, however, limits electrical activation above a critical donor density corresponding to P-P spacing of less than a single dimer row. With this insight, tuning of doping parameters allows us to repeatedly stack such 2D P layers to achieve 3D electron densities up to ∼2 × 10(20) cm(-3).
在 Ge 中实现可控的高 n 型掺杂将能够制造出许多创新的纳电子学和光子学器件。在这项工作中,我们通过扫描隧道显微镜、二次离子质谱和磁输运研究来理解 P2 分子对 Ge 的原子掺杂过程。利用 P2 分子在 Ge(001)表面的单原子足迹,我们在相对较低的工艺温度下成功地在 Ge 中掺入了完整的 P 单层。然而,随后形成的 P-P 二聚体限制了在施主密度超过一个临界值时的电激活,此时的 P-P 间距小于单个二聚体列的间距。有了这一认识,通过调整掺杂参数,我们可以重复堆叠这样的二维 P 层,以实现高达约 2×10(20)cm(-3)的 3D 电子密度。