Prucnal Slawomir, Żuk Jerzy, Hübner René, Duan Juanmei, Wang Mao, Pyszniak Krzysztof, Drozdziel Andrzej, Turek Marcin, Zhou Shengqiang
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany.
Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1, 20-035 Lublin, Poland.
Materials (Basel). 2020 Mar 20;13(6):1408. doi: 10.3390/ma13061408.
Controlled doping with an effective carrier concentration higher than 10 cm is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below -100 °C with ion flux less than 60 nAcm and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process.
对于将锗完全集成到硅基技术中而言,控制掺杂使其有效载流子浓度高于10¹⁹ cm⁻³是一项关键挑战。需要这样一层高掺杂的p型和n型层来提供具有低电阻率的欧姆接触。我们研究了离子注入参数,即离子能量、注量、离子类型和保护层对电子有效浓度的影响。我们已经表明,随着掺杂层厚度的减小,最大电子浓度会增加。通过在低于 -100 °C的温度下进行离子注入,离子通量小于60 nA/cm²且最大离子能量小于120 keV,可以将注入的锗表面的退化降至最低。对注入层进行20毫秒的闪光灯退火,以抑制再结晶过程中注入离子的扩散。