Bioengineering, University of Washington, William H. Foege Building, 1705 NE Pacific St. Campus Box 355061, Seattle, Washington, USA.
Lab Chip. 2014 Jan 21;14(2):302-14. doi: 10.1039/c3lc51052b. Epub 2013 Nov 13.
Gradients of biochemical molecules play a key role in many physiological processes such as axon growth, tissue morphogenesis, and trans-epithelium nutrient transport, as well as in pathophysiological phenomena such as wound healing, immune response, bacterial invasion, and cancer metastasis. In this paper, we report a microfluidic transwell insert for generating quantifiable concentration gradients in a user-friendly and modular format that is compatible with conventional cell cultures and with tissue explant cultures. The device is simply inserted into a standard 6-well plate, where it hangs self-supported at a distance of ~250 μm above the cell culture surface. The gradient is created by small microflows from the device, through an integrated track-etched porous membrane, into the cell culture well. The microfluidic transwell can deliver stable, quantifiable gradients over a large area with extremely low fluid shear stress to dissociated cells or tissue explants cultured independently on the surface of a 6-well plate. We used finite-element modeling to describe the porous membrane flow and molecular transport and to predict gradients generated by the device. Using the device, we applied a gradient of the chemotactic peptide N-formyl-met-leu-phe (fMLP) to a large population of HL-60 cells (a neutrophil cell line) and directly observed the migration with time-lapse microscopy. On quantification of the chemotactic response with an automated tracking algorithm, we found 74% of the cells moving towards the gradient. Additionally, the modular design and low fluid shear stress made it possible to apply gradients of growth factors and second messengers to mouse retinal explant cultures. With a simplified interface and well-defined gradients, the microfluidic transwell device has potential for broad applications to gradient-sensing biology.
生物化学分子的浓度梯度在许多生理过程中起着关键作用,如轴突生长、组织形态发生和跨上皮营养物质运输,以及在生理病理现象如伤口愈合、免疫反应、细菌入侵和癌症转移中。在本文中,我们报告了一种微流控 Transwell 插入物,它以用户友好和模块化的格式生成可量化的浓度梯度,与传统细胞培养和组织外植体培养兼容。该装置只需简单地插入标准的 6 孔板中,即可在距离细胞培养表面约 250μm 的高度上自支撑悬挂。通过设备内部的小微流,穿过集成的刻蚀多孔膜,进入细胞培养孔,形成梯度。微流控 Transwell 可以在大面积上提供稳定、可量化的梯度,同时对独立培养在 6 孔板表面的解离细胞或组织外植体施加极低的流体剪切力。我们使用有限元建模来描述多孔膜流动和分子输运,并预测设备产生的梯度。使用该装置,我们将趋化肽 N-甲酰基甲硫氨酰亮氨酰苯丙氨酸(fMLP)的梯度施加于大量 HL-60 细胞(一种嗜中性粒细胞系)上,并通过延时显微镜直接观察细胞的迁移。通过自动跟踪算法对趋化反应进行定量分析,我们发现 74%的细胞向梯度方向移动。此外,模块化设计和低流体剪切力使得可以将生长因子和第二信使的梯度施加于小鼠视网膜外植体培养物上。该微流控 Transwell 装置具有简化的接口和明确的梯度,具有广泛应用于梯度感应生物学的潜力。