Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico 00956, and Department of Pharmacology Wayne State University School of Medicine, Detroit, Michigan 48001.
J Neurosci. 2013 Nov 13;33(46):18319-30. doi: 10.1523/JNEUROSCI.5293-12.2013.
Some forms of idiopathic epilepsy in animals and humans are associated with deficiency of synapsin, a phosphoprotein that reversibly associates with synaptic vesicles. We have previously shown that the epileptic phenotype seen in synapsin II knock-out mice (SynII(-)) can be rescued by the genetic deletion of the Rab3a protein. Here we have examined the cellular basis for this rescue using whole-cell recordings from CA1 hippocampal pyramidal cells in brain slices. We find that SynII(-) neurons have increased spontaneous activity and a reduced threshold for the induction of epileptiform activity by 4-aminopyridine (4-AP). Using selective recordings of glutamatergic and GABAergic activity we show that in wild-type neurons low concentrations of 4-AP facilitate glutamatergic and GABAergic transmission in a balanced way, whereas in SynII(-) neurons this balance is shifted toward excitation. This imbalance reflects a deficit in inhibitory synaptic transmission that appears to be secondary to reduced Ca(2+) sensitivity in SynII(-) neurons. This suggestion is supported by our finding that synaptic and epileptiform activity at SynII(-) and wild-type synapses is similar when GABAergic transmission is blocked. Deletion of Rab3a results in glutamatergic synapses that have a compromised responsiveness to either low 4-AP concentrations or elevated extracellular Ca(2+). These changes mitigate the overexcitable phenotype observed in SynII(-) neurons. Thus, Rab3a deletion appears to restore the excitatory/inhibitory imbalance observed in SynII(-) hippocampal slices indirectly, not by correcting the deficit in GABAergic synaptic transmission but rather by impairing excitatory glutamatergic synaptic transmission.
某些动物和人类的特发性癫痫与突触结合蛋白(synapsin)的缺乏有关,这种磷酸化蛋白可与突触小泡可逆结合。我们先前的研究表明,突触结合蛋白 II 敲除小鼠(SynII(-))中出现的癫痫表型可通过 Rab3a 蛋白的遗传缺失得到挽救。在此,我们使用脑片 CA1 海马锥体神经元的全细胞记录,研究了这种挽救的细胞基础。我们发现,SynII(-)神经元的自发性活动增加,4-氨基吡啶(4-AP)诱导癫痫样活动的阈值降低。通过对谷氨酸能和 GABA 能活性的选择性记录,我们发现野生型神经元中,低浓度的 4-AP 以平衡的方式促进谷氨酸能和 GABA 能传递,而在 SynII(-)神经元中,这种平衡向兴奋转移。这种不平衡反映了抑制性突触传递的缺陷,这种缺陷似乎是 SynII(-)神经元中 Ca(2+)敏感性降低的结果。这一假设得到了我们的发现的支持,即在 GABA 能传递被阻断时,SynII(-)和野生型神经元的突触和癫痫样活动相似。Rab3a 的缺失导致谷氨酸能突触对低浓度 4-AP 或升高的细胞外 Ca(2+)的反应性受损。这些变化减轻了在 SynII(-)神经元中观察到的过度兴奋表型。因此,Rab3a 的缺失似乎间接地恢复了在 SynII(-)海马切片中观察到的兴奋性/抑制性失衡,不是通过纠正 GABA 能突触传递的缺陷,而是通过损害兴奋性谷氨酸能突触传递。