Suppr超能文献

(18)F-脂肪酸 II 和 (18)F-FDG 双示踪剂动态 PET 用于参数化、早期预测肿瘤对治疗的反应。

(18)F-alfatide II and (18)F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy.

机构信息

Department of Biomedical Engineering and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, China.

出版信息

J Nucl Med. 2014 Jan;55(1):154-60. doi: 10.2967/jnumed.113.122069. Epub 2013 Nov 14.

Abstract

UNLABELLED

A single dynamic PET acquisition using multiple tracers administered closely in time could provide valuable complementary information about a tumor's status under quasiconstant conditions. This study aimed to investigate the utility of dual-tracer dynamic PET imaging with (18)F-alfatide II ((18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2) and (18)F-FDG for parametric monitoring of tumor responses to therapy.

METHODS

We administered doxorubicin to one group of athymic nude mice with U87MG tumors and paclitaxel protein-bound particles to another group of mice with MDA-MB-435 tumors. To monitor therapeutic responses, we performed dual-tracer dynamic imaging, in sessions that lasted 90 min, starting with injection via the tail vein catheters with (18)F-alfatide II, followed 40 min later by (18)F-FDG. To achieve signal separation of the 2 tracers, we fit a 3-compartment reversible model to the time-activity curve of (18)F-alfatide II for the 40 min before (18)F-FDG injection and then extrapolated to 90 min. The (18)F-FDG tumor time-activity curve was isolated from the 90-min dual-tracer tumor time-activity curve by subtracting the fitted (18)F-alfatide II tumor time-activity curve. With separated tumor time-activity curves, the (18)F-alfatide II binding potential (Bp = k3/k4) and volume of distribution (VD) and (18)F-FDG influx rate ((K1 × k3)/(k2 + k3)) based on the Patlak method were calculated to validate the signal recovery in a comparison with 60-min single-tracer imaging and to monitor therapeutic response.

RESULTS

The transport and binding rate parameters K1-k3 of (18)F-alfatide II, calculated from the first 40 min of the dual-tracer dynamic scan, as well as Bp and VD correlated well with the parameters from the 60-min single-tracer scan (R(2) > 0.95). Compared with the results of single-tracer PET imaging, (18)F-FDG tumor uptake and influx were recovered well from dual-tracer imaging. On doxorubicin treatment, whereas no significant changes in static tracer uptake values of (18)F-alfatide II or (18)F-FDG were observed, both (18)F-alfatide II Bp and (18)F-FDG influx from kinetic analysis in tumors showed significant decreases. For therapy of MDA-MB-435 tumors with paclitaxel protein-bound particles, a significant decrease was observed only with (18)F-alfatide II Bp value from kinetic analysis but not (18)F-FDG influx.

CONCLUSION

The parameters fitted with compartmental modeling from the dual-tracer dynamic imaging are consistent with those from single-tracer imaging, substantiating the feasibility of this methodology. Even though no significant differences in tumor size were found until 5 d after doxorubicin treatment started, at day 3 there were already substantial differences in (18)F-alfatide II Bp and (18)F-FDG influx rate. Dual-tracer imaging can measure (18)F-alfatide II Bp value and (18)F-FDG influx simultaneously to evaluate tumor angiogenesis and metabolism. Such changes are known to precede anatomic changes, and thus parametric imaging may offer the promise of early prediction of therapy response.

摘要

目的

本研究旨在探讨使用双示踪剂动态 PET 成像((18)F-alfatide II((18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2)和(18)F-FDG)进行参数监测肿瘤对治疗的反应的效用。

方法

我们用阿霉素治疗一组携带 U87MG 肿瘤的无胸腺裸鼠,用紫杉醇蛋白结合颗粒治疗另一组携带 MDA-MB-435 肿瘤的小鼠。为了监测治疗反应,我们进行了双示踪剂动态成像,每次持续 90 分钟,从尾静脉导管注射(18)F-alfatide II 开始,40 分钟后注射(18)F-FDG。为了实现两种示踪剂信号的分离,我们对(18)F-alfatide II 的时间-活性曲线进行了 3 室可逆模型拟合,在注射(18)F-FDG 前 40 分钟进行拟合,然后外推至 90 分钟。通过从 90 分钟的双示踪剂肿瘤时间-活性曲线中减去拟合的(18)F-alfatide II 肿瘤时间-活性曲线来分离(18)F-FDG 肿瘤时间-活性曲线。有了分离的肿瘤时间-活性曲线,基于 Patlak 方法计算(18)F-alfatide II 的结合潜力(Bp = k3/k4)和分布容积(VD)以及(18)F-FDG 流入率((K1×k3)/(k2+k3)),以验证与 60 分钟单示踪剂成像相比信号恢复情况,并监测治疗反应。

结果

从双示踪剂动态扫描的前 40 分钟计算出的(18)F-alfatide II 的转运和结合率参数 K1-k3,以及 Bp 和 VD 与 60 分钟单示踪剂扫描的参数高度相关(R2>0.95)。与单示踪剂 PET 成像结果相比,(18)F-FDG 肿瘤摄取和流入从双示踪剂成像中得到了很好的恢复。在用阿霉素治疗时,虽然(18)F-alfatide II 或(18)F-FDG 的静态示踪剂摄取值没有明显变化,但从动力学分析来看,(18)F-alfatide II 的结合潜力和(18)F-FDG 的流入都显著降低。对于用紫杉醇蛋白结合颗粒治疗 MDA-MB-435 肿瘤,仅从动力学分析观察到(18)F-alfatide II 的 Bp 值显著降低,但(18)F-FDG 的流入没有显著降低。

结论

从双示踪剂动态成像中用房室模型拟合的参数与单示踪剂成像的参数一致,证实了这种方法的可行性。尽管在开始阿霉素治疗 5 天后才发现肿瘤大小没有明显变化,但在第 3 天,(18)F-alfatide II 的 Bp 和(18)F-FDG 流入率已经有了明显的差异。双示踪剂成像可以同时测量(18)F-alfatide II 的 Bp 值和(18)F-FDG 的流入率,以评估肿瘤的血管生成和代谢。这些变化已知先于解剖变化,因此参数成像可能有望早期预测治疗反应。

相似文献

1
(18)F-alfatide II and (18)F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy.
J Nucl Med. 2014 Jan;55(1):154-60. doi: 10.2967/jnumed.113.122069. Epub 2013 Nov 14.
2
Longitudinal PET imaging of muscular inflammation using 18F-DPA-714 and 18F-Alfatide II and differentiation with tumors.
Theranostics. 2014 Feb 26;4(5):546-55. doi: 10.7150/thno.8159. eCollection 2014.
3
18F-FPPRGD2 and 18F-FDG PET of response to Abraxane therapy.
J Nucl Med. 2011 Jan;52(1):140-6. doi: 10.2967/jnumed.110.080606. Epub 2010 Dec 13.
4
A comparison study of dynamic [F]Alfatide II imaging and [C]MET in orthotopic rat models of glioblastoma.
J Cancer Res Clin Oncol. 2024 Apr 22;150(4):208. doi: 10.1007/s00432-024-05688-4.
5
(18)F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases.
Eur J Nucl Med Mol Imaging. 2015 Dec;42(13):2021-8. doi: 10.1007/s00259-015-3118-2. Epub 2015 Jul 1.
9
Single-scan dual-tracer FLT+FDG PET tumor characterization.
Phys Med Biol. 2013 Feb 7;58(3):429-49. doi: 10.1088/0031-9155/58/3/429. Epub 2013 Jan 8.

引用本文的文献

2
Kinetic model-informed deep learning for multiplexed PET image separation.
EJNMMI Phys. 2024 Jul 1;11(1):56. doi: 10.1186/s40658-024-00660-0.
3
A comparison study of dynamic [F]Alfatide II imaging and [C]MET in orthotopic rat models of glioblastoma.
J Cancer Res Clin Oncol. 2024 Apr 22;150(4):208. doi: 10.1007/s00432-024-05688-4.
4
Advancing cancer theranostics through biomimetics: A comprehensive review.
Heliyon. 2024 Mar 11;10(6):e27692. doi: 10.1016/j.heliyon.2024.e27692. eCollection 2024 Mar 30.
5
Direct reconstruction for simultaneous dual-tracer PET imaging based on multi-task learning.
EJNMMI Res. 2023 Jan 31;13(1):7. doi: 10.1186/s13550-023-00955-w.
7
PET Parametric Imaging: Past, Present, and Future.
IEEE Trans Radiat Plasma Med Sci. 2020 Nov;4(6):663-675. doi: 10.1109/trpms.2020.3025086. Epub 2020 Sep 21.
9
Frontiers in positron emission tomography imaging of the vulnerable atherosclerotic plaque.
Cardiovasc Res. 2019 Dec 1;115(14):1952-1962. doi: 10.1093/cvr/cvz162.
10
F-Alfatide II PET/CT for Identification of Breast Cancer: A Preliminary Clinical Study.
J Nucl Med. 2018 Dec;59(12):1809-1816. doi: 10.2967/jnumed.118.208637. Epub 2018 Apr 26.

本文引用的文献

2
Single-scan dual-tracer FLT+FDG PET tumor characterization.
Phys Med Biol. 2013 Feb 7;58(3):429-49. doi: 10.1088/0031-9155/58/3/429. Epub 2013 Jan 8.
3
Ready for prime time? Dual tracer PET and SPECT imaging.
Am J Nucl Med Mol Imaging. 2012;2(4):415-7. Epub 2012 Oct 15.
4
A study of non-invasive Patlak quantification for whole-body dynamic FDG-PET studies of mice.
Biomed Signal Process Control. 2012 Sep 1;7(5):438-446. doi: 10.1016/j.bspc.2011.11.005.
7
PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AlF-NOTA-PRGD2.
Eur J Nucl Med Mol Imaging. 2012 Apr;39(4):683-92. doi: 10.1007/s00259-011-2052-1. Epub 2012 Jan 25.
8
Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice.
Bioconjug Chem. 2011 Dec 21;22(12):2415-22. doi: 10.1021/bc200197h. Epub 2011 Nov 3.
9
Exchange-coupled magnetic nanoparticles for efficient heat induction.
Nat Nanotechnol. 2011 Jun 26;6(7):418-22. doi: 10.1038/nnano.2011.95.
10
TRAIL and doxorubicin combination enhances anti-glioblastoma effect based on passive tumor targeting of liposomes.
J Control Release. 2011 Aug 25;154(1):93-102. doi: 10.1016/j.jconrel.2011.05.008. Epub 2011 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验