Suppr超能文献

基于多任务学习的同时双示踪剂PET成像直接重建

Direct reconstruction for simultaneous dual-tracer PET imaging based on multi-task learning.

作者信息

Zeng Fuzhen, Fang Jingwan, Muhashi Amanjule, Liu Huafeng

机构信息

State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.

出版信息

EJNMMI Res. 2023 Jan 31;13(1):7. doi: 10.1186/s13550-023-00955-w.

Abstract

BACKGROUND

Simultaneous dual-tracer positron emission tomography (PET) imaging can observe two molecular targets in a single scan, which is conducive to disease diagnosis and tracking. Since the signals emitted by different tracers are the same, it is crucial to separate each single tracer from the mixed signals. The current study proposed a novel deep learning-based method to reconstruct single-tracer activity distributions from the dual-tracer sinogram.

METHODS

We proposed the Multi-task CNN, a three-dimensional convolutional neural network (CNN) based on a framework of multi-task learning. One common encoder extracted features from the dual-tracer dynamic sinogram, followed by two distinct and parallel decoders which reconstructed the single-tracer dynamic images of two tracers separately. The model was evaluated by mean squared error (MSE), multiscale structural similarity (MS-SSIM) index and peak signal-to-noise ratio (PSNR) on simulated data and real animal data, and compared to the filtered back-projection method based on deep learning (FBP-CNN).

RESULTS

In the simulation experiments, the Multi-task CNN reconstructed single-tracer images with lower MSE, higher MS-SSIM and PSNR than FBP-CNN, and was more robust to the changes in individual difference, tracer combination and scanning protocol. In the experiment of rats with an orthotopic xenograft glioma model, the Multi-task CNN reconstructions also showed higher qualities than FBP-CNN reconstructions.

CONCLUSIONS

The proposed Multi-task CNN could effectively reconstruct the dynamic activity images of two single tracers from the dual-tracer dynamic sinogram, which was potential in the direct reconstruction for real simultaneous dual-tracer PET imaging data in future.

摘要

背景

同步双示踪剂正电子发射断层扫描(PET)成像能够在单次扫描中观察两个分子靶点,这有助于疾病的诊断和追踪。由于不同示踪剂发出的信号相同,因此从混合信号中分离出每个单一示踪剂至关重要。当前研究提出了一种基于深度学习的新方法,用于从双示踪剂正弦图重建单示踪剂活性分布。

方法

我们提出了多任务卷积神经网络(Multi-task CNN),这是一种基于多任务学习框架的三维卷积神经网络(CNN)。一个公共编码器从双示踪剂动态正弦图中提取特征,随后是两个不同的并行解码器,它们分别重建两种示踪剂的单示踪剂动态图像。该模型在模拟数据和真实动物数据上通过均方误差(MSE)、多尺度结构相似性(MS-SSIM)指数和峰值信噪比(PSNR)进行评估,并与基于深度学习的滤波反投影方法(FBP-CNN)进行比较。

结果

在模拟实验中,多任务卷积神经网络重建的单示踪剂图像比FBP-CNN具有更低的MSE、更高的MS-SSIM和PSNR,并且对个体差异、示踪剂组合和扫描协议的变化更具鲁棒性。在原位异种移植胶质瘤模型大鼠实验中,多任务卷积神经网络的重建结果也显示出比FBP-CNN重建更高的质量。

结论

所提出的多任务卷积神经网络能够有效地从双示踪剂动态正弦图重建两种单示踪剂的动态活性图像,这在未来对真实同步双示踪剂PET成像数据的直接重建中具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/233d/9889598/11eb07806fbe/13550_2023_955_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验