School of Information, Beijing Wuzi University, Beijing 101149, China.
Comput Math Methods Med. 2013;2013:698341. doi: 10.1155/2013/698341. Epub 2013 Oct 23.
A metabolic system consists of a number of reactions transforming molecules of one kind into another to provide the energy that living cells need. Based on the biochemical reaction principles, dynamic metabolic systems can be modeled by a group of coupled differential equations which consists of parameters, states (concentration of molecules involved), and reaction rates. Reaction rates are typically either polynomials or rational functions in states and constant parameters. As a result, dynamic metabolic systems are a group of differential equations nonlinear and coupled in both parameters and states. Therefore, it is challenging to estimate parameters in complex dynamic metabolic systems. In this paper, we propose a method to analyze the complexity of dynamic metabolic systems for parameter estimation. As a result, the estimation of parameters in dynamic metabolic systems is reduced to the estimation of parameters in a group of decoupled rational functions plus polynomials (which we call improper rational functions) or in polynomials. Furthermore, by taking its special structure of improper rational functions, we develop an efficient algorithm to estimate parameters in improper rational functions. The proposed method is applied to the estimation of parameters in a dynamic metabolic system. The simulation results show the superior performance of the proposed method.
代谢系统由一系列将一种分子转化为另一种分子的反应组成,为生命细胞提供所需的能量。基于生化反应原理,动态代谢系统可以通过一组耦合微分方程来建模,这些方程由参数、状态(参与反应的分子浓度)和反应速率组成。反应速率通常是状态和常数参数的多项式或有理函数。因此,动态代谢系统是一组在参数和状态上都是非线性和耦合的微分方程。因此,估计复杂动态代谢系统中的参数具有挑战性。在本文中,我们提出了一种分析动态代谢系统参数估计复杂性的方法。结果,动态代谢系统中的参数估计可以简化为一组解耦的有理函数加多项式(我们称之为非真有理函数)或多项式的参数估计。此外,通过利用非真有理函数的特殊结构,我们开发了一种有效的算法来估计非真有理函数的参数。该方法应用于动态代谢系统的参数估计。仿真结果表明了所提方法的优越性能。