Sun Xiaodian, Jin Li, Xiong Momiao
Laboratory of Theoretical Systems Biology and Center for Evolutionary Biology, School of Life Science and Institute for Biomedical Sciences, Fudan University, Shanghai, China.
PLoS One. 2008;3(11):e3758. doi: 10.1371/journal.pone.0003758. Epub 2008 Nov 19.
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.
正是系统动力学决定了细胞、组织和生物体的功能。建立数学模型并估计其参数是研究生物系统动态行为的一个基本问题,这些生物系统包括代谢网络、基因调控网络和信号转导通路,且处于外部刺激的扰动之下。一般来说,生物动态系统是部分可观测的。因此,对动态生物系统进行建模的自然方法是采用非线性状态空间方程。尽管近年来针对生物动态系统中线性模型的参数估计已深入开发了统计方法,但非线性动态系统的状态和参数估计仍然是一项具有挑战性的任务。在本报告中,我们将扩展卡尔曼滤波器(EKF)应用于非线性状态空间模型的状态和参数估计。为了评估EKF用于参数估计的性能,我们将EKF应用于一个模拟数据集和两个真实数据集:JAK - STAT信号转导通路数据集以及Ras/Raf/MEK/ERK信号转导通路数据集。初步结果表明,EKF能够准确估计非线性状态空间方程中的参数并预测状态,以用于对动态生化网络进行建模。