Suppr超能文献

细胞质体积的变化足以驱动纺锤体缩放。

Changes in cytoplasmic volume are sufficient to drive spindle scaling.

机构信息

Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.

出版信息

Science. 2013 Nov 15;342(6160):853-6. doi: 10.1126/science.1243110.

Abstract

The mitotic spindle must function in cell types that vary greatly in size, and its dimensions scale with the rapid, reductive cell divisions that accompany early stages of development. The mechanism responsible for this scaling is unclear, because uncoupling cell size from a developmental or cellular context has proven experimentally challenging. We combined microfluidic technology with Xenopus egg extracts to characterize spindle assembly within discrete, geometrically defined volumes of cytoplasm. Reductions in cytoplasmic volume, rather than developmental cues or changes in cell shape, were sufficient to recapitulate spindle scaling observed in Xenopus embryos. Thus, mechanisms extrinsic to the spindle, specifically a limiting pool of cytoplasmic component(s), play a major role in determining spindle size.

摘要

有丝分裂纺锤体必须在大小差异很大的细胞类型中发挥功能,其尺寸与伴随发育早期的快速还原细胞分裂成比例。负责这种缩放的机制尚不清楚,因为从发育或细胞背景中解耦细胞大小在实验上具有挑战性。我们将微流控技术与非洲爪蟾卵提取物相结合,以在离散的、几何定义的细胞质体积内表征纺锤体组装。细胞质体积的减少,而不是发育线索或细胞形状的变化,足以再现非洲爪蟾胚胎中观察到的纺锤体缩放。因此,纺锤体之外的机制,特别是细胞质成分(s)的有限池,在决定纺锤体大小方面起着重要作用。

相似文献

1
Changes in cytoplasmic volume are sufficient to drive spindle scaling.
Science. 2013 Nov 15;342(6160):853-6. doi: 10.1126/science.1243110.
2
Cytoplasmic volume modulates spindle size during embryogenesis.
Science. 2013 Nov 15;342(6160):856-60. doi: 10.1126/science.1243147.
4
Microfluidic Encapsulation of Demembranated Sperm Nuclei in Egg Extracts.
Cold Spring Harb Protoc. 2018 Aug 1;2018(8):pdb.prot102913. doi: 10.1101/pdb.prot102913.
5
Mitotic chromosomes scale to nuclear-cytoplasmic ratio and cell size in .
Elife. 2023 Apr 25;12:e84360. doi: 10.7554/eLife.84360.
6
Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle.
J Cell Biol. 2007 Mar 12;176(6):765-70. doi: 10.1083/jcb.200610043. Epub 2007 Mar 5.
7
Mitotic chromosome size scaling in Xenopus.
Cell Cycle. 2011 Nov 15;10(22):3863-70. doi: 10.4161/cc.10.22.17975.
8
Spindle size: small droplets and a big step forward.
Curr Biol. 2014 Feb 3;24(3):R116-8. doi: 10.1016/j.cub.2013.12.031.
9
Mitotic spindle scaling during Xenopus development by kif2a and importin α.
Elife. 2013 Feb 19;2:e00290. doi: 10.7554/eLife.00290.
10
In vivo mitotic spindle scaling can be modulated by changing the levels of a single protein: the microtubule polymerase XMAP215.
Mol Biol Cell. 2018 Jun 1;29(11):1311-1317. doi: 10.1091/mbc.E18-01-0011. Epub 2018 Apr 5.

引用本文的文献

1
Fabrication of microcompartments with controlled size and shape for encapsulating active matter.
Front Cell Dev Biol. 2025 Jun 20;13:1616089. doi: 10.3389/fcell.2025.1616089. eCollection 2025.
2
A key role for centralspindlin and Ect2 in the development of multicellularity and the emergence of Metazoa.
Curr Biol. 2025 Jul 7;35(13):3251-3262.e1. doi: 10.1016/j.cub.2025.05.052. Epub 2025 Jun 17.
3
Cell state-specific cytoplasmic density controls spindle architecture and scaling.
Nat Cell Biol. 2025 Jun;27(6):959-971. doi: 10.1038/s41556-025-01678-x. Epub 2025 Jun 13.
4
Artificial cell system as a tool for investigating pattern formation mechanisms of intracellular reaction-diffusion waves.
Biophys Physicobiol. 2024 Oct 10;21(4):e210022. doi: 10.2142/biophysico.bppb-v21.0022. eCollection 2024.
5
The cell cycle oscillator and spindle length set the speed of chromosome separation in Drosophila embryos.
Curr Biol. 2025 Feb 3;35(3):655-664.e3. doi: 10.1016/j.cub.2024.11.046. Epub 2025 Jan 9.
6
Controlling phase separations and reactions in trapped microfluidic droplets.
Sci Rep. 2024 Sep 9;14(1):20998. doi: 10.1038/s41598-024-71586-x.
7
Calibrating Fluorescence Microscopy With 3D-Speckler (3D Fluorescence Speckle Analyzer).
Bio Protoc. 2024 Aug 20;14(16):e5051. doi: 10.21769/BioProtoc.5051.
9
Eukaryotic cell size regulation and its implications for cellular function and dysfunction.
Physiol Rev. 2024 Oct 1;104(4):1679-1717. doi: 10.1152/physrev.00046.2023. Epub 2024 Jun 20.
10
cell-free extracts and their applications in cell biology study.
Biophys Rep. 2023 Aug 31;9(4):195-205. doi: 10.52601/bpr.2023.230016.

本文引用的文献

1
Soft Lithography.
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
2
RanGTP and CLASP1 cooperate to position the mitotic spindle.
Mol Biol Cell. 2013 Aug;24(16):2506-14. doi: 10.1091/mbc.E13-03-0150. Epub 2013 Jun 19.
3
Mitotic spindle scaling during Xenopus development by kif2a and importin α.
Elife. 2013 Feb 19;2:e00290. doi: 10.7554/eLife.00290.
4
Organelle size equalization by a constitutive process.
Curr Biol. 2012 Nov 20;22(22):2173-9. doi: 10.1016/j.cub.2012.09.040. Epub 2012 Oct 18.
5
The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development.
J Cell Biol. 2012 Aug 6;198(3):357-70. doi: 10.1083/jcb.201202135. Epub 2012 Jul 30.
6
Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells.
Cytoskeleton (Hoboken). 2012 Oct;69(10):738-50. doi: 10.1002/cm.21050. Epub 2012 Aug 20.
7
Organelle growth control through limiting pools of cytoplasmic components.
Curr Biol. 2012 May 8;22(9):R330-9. doi: 10.1016/j.cub.2012.03.046. Epub 2012 May 7.
9
Limiting amounts of centrosome material set centrosome size in C. elegans embryos.
Curr Biol. 2011 Aug 9;21(15):1259-67. doi: 10.1016/j.cub.2011.06.002. Epub 2011 Jul 28.
10
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验