Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
Curr Biol. 2012 May 8;22(9):R330-9. doi: 10.1016/j.cub.2012.03.046. Epub 2012 May 7.
The critical importance of controlling the size and number of intracellular organelles has led to a variety of mechanisms for regulating the formation and growth of cellular structures. In this review, we explore a class of mechanisms for organelle growth control that rely primarily on the cytoplasm as a 'limiting pool' of available material. These mechanisms are based on the idea that, as organelles grow, they incorporate subunits from the cytoplasm. If this subunit pool is limited, organelle growth will lead to depletion of subunits from the cytoplasm. Free subunit concentration therefore provides a measure of the number of incorporated subunits and thus the current size of the organelle. Because organelle growth rates are typically a function of subunit concentration, cytoplasmic depletion links organelle size, free subunit concentration, and growth rates, ensuring that as the organelle grows, its rate of growth slows. Thus, a limiting cytoplasmic pool provides a powerful mechanism for size-dependent regulation of growth without recourse to active mechanisms to measure size or modulate growth rates. Variations of this general idea allow not only for size control, but also cell-size-dependent scaling of cellular structures, coordination of growth between similar structures within a cell, and the enforcement of singularity in structure formation, when only a single copy of a structure is desired. Here, we review several examples of such mechanisms in cellular processes as diverse as centriole duplication, centrosome and nuclear size control, cell polarity, and growth of flagella.
细胞内细胞器的大小和数量的控制至关重要,这导致了各种调节细胞结构形成和生长的机制。在这篇综述中,我们探讨了一类主要依赖细胞质作为“可用物质限制池”的细胞器生长控制机制。这些机制基于这样的观点,即随着细胞器的生长,它们从细胞质中纳入亚基。如果这个亚基池是有限的,细胞器的生长将导致细胞质中亚基的耗尽。因此,游离亚基浓度提供了一个衡量已纳入亚基数目的指标,从而反映了细胞器的当前大小。由于细胞器的生长速率通常是亚基浓度的函数,细胞质的消耗将细胞器的大小、游离亚基浓度和生长速率联系起来,确保随着细胞器的生长,其生长速率会减缓。因此,一个有限的细胞质池为依赖大小的生长调节提供了一种强大的机制,而无需依赖主动测量大小或调节生长速率的机制。这种一般思想的变体不仅允许进行大小控制,还允许进行细胞大小相关的细胞结构缩放、细胞内类似结构之间的生长协调以及结构形成中的奇点强制执行,当仅需要结构的单个副本时。在这里,我们综述了细胞过程中的几个这样的机制的例子,如中心体复制、中心体和核大小控制、细胞极性以及鞭毛的生长。