Klyachko Natalia L, Haney Matthew J, Zhao Yuling, Manickam Devika S, Mahajan Vivek, Suresh Poornima, Hingtgen Shawn D, Mosley R Lee, Gendelman Howard E, Kabanov Alexander V, Batrakova Elena V
Laboratory for Chemical Design of Bionanomaterials & the Department of Chemical Enzymology, Faculty of Chemistry, MV Lomonosov Moscow State University, Moscow, Russia and Department of Pharmaceutical Sciences, Center for Drug Delivery & Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA.
Nanomedicine (Lond). 2014 Jul;9(9):1403-22. doi: 10.2217/nnm.13.115. Epub 2013 Nov 18.
Active targeted transport of the nanoformulated redox enzyme, catalase, in macrophages attenuates oxidative stress and as such increases survival of dopaminergic neurons in animal models of Parkinson's disease. Optimization of the drug formulation is crucial for the successful delivery in living cells. We demonstrated earlier that packaging of catalase into a polyion complex micelle ('nanozyme') with a synthetic polyelectrolyte block copolymer protected the enzyme against degradation in macrophages and improved therapeutic outcomes. We now report the manufacture of nanozymes with superior structure and therapeutic indices.
Synthesis, characterization and therapeutic efficacy of optimal cell-based nanoformulations are evaluated.
A formulation design for drug carriers typically works to avoid entrapment in monocytes and macrophages focusing on small-sized nanoparticles with a polyethylene glycol corona (to provide a stealth effect). By contrast, the best nanozymes for delivery in macrophages reported in this study have a relatively large size (≈ 200 nm), which resulted in improved loading capacity and release from macrophages. Furthermore, the cross-linking of nanozymes with the excess of a nonbiodegradable linker ensured their low cytotoxicity, and efficient catalase protection in cell carriers. Finally, the 'alternatively activated' macrophage phenotype (M2) utilized in these studies did not promote further inflammation in the brain, resulting in a subtle but statistically significant effect on neuronal regeneration and repair in vivo.
The optimized cross-linked nanozyme loaded into macrophages reduced neuroinflammatory responses and increased neuronal survival in mice. Importantly, the approach for nanoformulation design for cell-mediated delivery is different from the common requirements for injectable formulations.
纳米配方的氧化还原酶过氧化氢酶在巨噬细胞中的主动靶向运输可减轻氧化应激,从而提高帕金森病动物模型中多巴胺能神经元的存活率。药物配方的优化对于在活细胞中的成功递送至关重要。我们之前证明,将过氧化氢酶包装到带有合成聚电解质嵌段共聚物的聚离子复合胶束(“纳米酶”)中可保护该酶在巨噬细胞中不被降解,并改善治疗效果。我们现在报告具有优异结构和治疗指标的纳米酶的制造方法。
评估基于细胞的最佳纳米配方的合成、表征和治疗效果。
药物载体的配方设计通常致力于避免被单核细胞和巨噬细胞截留,重点是具有聚乙二醇冠层的小尺寸纳米颗粒(以提供隐身效果)。相比之下,本研究报道的用于在巨噬细胞中递送的最佳纳米酶尺寸相对较大(约200 nm),这导致了更高的负载能力和从巨噬细胞中的释放。此外,纳米酶与过量的不可生物降解连接剂交联确保了它们的低细胞毒性以及在细胞载体中对过氧化氢酶的有效保护。最后,这些研究中使用的“交替激活”巨噬细胞表型(M2)不会促进大脑中的进一步炎症,对体内神经元的再生和修复产生了微妙但具有统计学意义的影响。
负载到巨噬细胞中的优化交联纳米酶可减少小鼠的神经炎症反应并提高神经元存活率。重要的是,用于细胞介导递送的纳米配方设计方法与注射用配方的常见要求不同。