Suppr超能文献

闭环胰岛素输送过程中葡萄糖传感器偏差的随机调整评估。

Evaluation of stochastic adjustment for glucose sensor bias during closed-loop insulin delivery.

机构信息

Jaeb Center for Health Research , Tampa, Florida.

出版信息

Diabetes Technol Ther. 2014 Mar;16(3):186-92. doi: 10.1089/dia.2013.0133. Epub 2013 Nov 15.

Abstract

BACKGROUND

In outpatient studies of closed-loop insulin delivery systems, it is not typically practical to obtain blood glucose measurements for an outcome measure. Using a continuous glucose monitoring (CGM) device as both part of the intervention and as the outcome in a clinical trial can give a biased estimate of the treatment effect. A stochastic adjustment has been proposed to correct this problem.

MATERIALS AND METHODS

We performed Monte Carlo simulations to assess the performance of the stochastic adjustment in various scenarios where the CGM device was used passively and when it was used to inform insulin delivery. The resulting bias for using CGM to estimate the percentage of glucose values inside a target range was compared with and without the proposed stochastic adjustment.

RESULTS

CGM bias for estimating the percentage of glucose values 70-180 mg/dL ranged from -6% to +4% in the various scenarios studied. In some circumstances, stochastic adjustment did indeed reduce this CGM bias. However, in other circumstances, stochastic adjustment made the bias worse. Stochastic adjustment tended to underestimate the true percentage of glucose values in range for most, but not all, scenarios considered in these simulations.

CONCLUSIONS

Stochastic adjustment is not a general solution to the problem of CGM bias. The proposed adjustment relies on an implicit assumption that usually does not hold. The appropriate level of adjustment depends on how efficacious the closed-loop system is, which is not typically known in practice.

摘要

背景

在闭环胰岛素输送系统的门诊研究中,通常无法实际获得用于结局测量的血糖测量值。在临床试验中,将连续血糖监测 (CGM) 设备既用作干预措施的一部分,又用作结局,可能会对治疗效果产生有偏差的估计。已经提出了一种随机调整来纠正这个问题。

材料和方法

我们进行了蒙特卡罗模拟,以评估在 CGM 设备被动使用和用于告知胰岛素输送的各种情况下,随机调整的性能。使用 CGM 估计目标范围内葡萄糖值百分比的偏差与未使用和使用提出的随机调整进行了比较。

结果

在研究的各种情况下,使用 CGM 估计 70-180mg/dL 葡萄糖值百分比的偏差范围为-6%至+4%。在某些情况下,随机调整确实可以减少这种 CGM 偏差。然而,在其他情况下,随机调整会使偏差更糟。对于这些模拟中考虑的大多数情况,但并非所有情况,随机调整往往低估了真实范围内的葡萄糖值百分比。

结论

随机调整不是 CGM 偏差问题的通用解决方案。拟议的调整依赖于通常不成立的隐含假设。适当的调整水平取决于闭环系统的疗效,而这在实践中通常是未知的。

相似文献

9
Diabetes technology and treatments in the paediatric age group.儿科年龄组的糖尿病技术与治疗
Int J Clin Pract Suppl. 2011 Feb(170):76-82. doi: 10.1111/j.1742-1241.2010.02582.x.

引用本文的文献

本文引用的文献

2
Continuous glucose monitors: current status and future developments.连续血糖监测仪:现状与未来发展。
Curr Opin Endocrinol Diabetes Obes. 2013 Apr;20(2):106-11. doi: 10.1097/MED.0b013e32835edb9d.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验