Suppr超能文献

基于连续血糖监测评估闭环胰岛素输注系统的性能:缺陷与未来方向。

Assessing performance of closed-loop insulin delivery systems by continuous glucose monitoring: drawbacks and way forward.

机构信息

Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom.

出版信息

Diabetes Technol Ther. 2013 Jan;15(1):4-12. doi: 10.1089/dia.2012.0185. Epub 2012 Oct 9.

Abstract

BACKGROUND

We investigated whether continuous glucose monitoring (CGM) levels can accurately assess glycemic control while directing closed-loop insulin delivery.

SUBJECTS AND METHODS

Data were analyzed retrospectively from 33 subjects with type 1 diabetes who underwent closed-loop and conventional pump therapy on two separate nights. Glycemic control was evaluated by reference plasma glucose and contrasted against three methods based on Navigator (Abbott Diabetes Care, Alameda, CA) CGM levels.

RESULTS

Glucose mean and variability were estimated by unmodified CGM levels with acceptable clinical accuracy. Time when glucose was in target range was overestimated by CGM during closed-loop nights (CGM vs. plasma glucose median [interquartile range], 86% [65-97%] vs. 75% [59-91%]; P=0.04) but not during conventional pump therapy (57% [32-72%] vs. 51% [29-68%]; P=0.82) providing comparable treatment effect (mean [SD], 28% [29%] vs. 23% [21%]; P=0.11). Using the CGM measurement error of 15% derived from plasma glucose-CGM pairs (n=4,254), stochastic interpretation of CGM gave unbiased estimate of time in target during both closed-loop (79% [62-86%] vs. 75% [59-91%]; P=0.24) and conventional pump therapy (54% [33-66%] vs. 51% [29-68%]; P=0.44). Treatment effect (23% [24%] vs. 23% [21%]; P=0.96) and time below target were accurately estimated by stochastic CGM. Recalibrating CGM using reference plasma glucose values taken at the start and end of overnight closed-loop was not superior to stochastic CGM.

CONCLUSIONS

CGM is acceptable to estimate glucose mean and variability, but without adjustment it may overestimate benefit of closed-loop. Stochastic CGM provided unbiased estimate of time when glucose is in target and below target and may be acceptable for assessment of closed-loop in the outpatient setting.

摘要

背景

我们研究了连续血糖监测(CGM)水平在指导闭环胰岛素输送的同时是否能准确评估血糖控制情况。

受试者和方法

对 33 例 1 型糖尿病患者的夜间分别进行闭环和传统泵治疗的两项独立研究的数据进行回顾性分析。通过参考血浆葡萄糖评估血糖控制,并与基于 Navigator(雅培糖尿病护理公司,阿拉米达,加利福尼亚州)CGM 水平的三种方法进行对比。

结果

未经修正的 CGM 水平可准确估计血糖均值和变异性。闭环夜间 CGM 估计葡萄糖在目标范围内的时间过长(CGM 与血浆葡萄糖中位数[四分位距],86%[65-97%] vs. 75%[59-91%];P=0.04),但在传统泵治疗时并非如此(57%[32-72%] vs. 51%[29-68%];P=0.82),并提供相当的治疗效果(均值[标准差],28%[29%] vs. 23%[21%];P=0.11)。使用来自血浆葡萄糖-CGM 对(n=4254)的 15%CGM 测量误差,随机解释 CGM 可在闭环和传统泵治疗时均提供目标范围内时间的无偏估计(79%[62-86%] vs. 75%[59-91%];P=0.24)(54%[33-66%] vs. 51%[29-68%];P=0.44)。随机 CGM 可准确估计治疗效果(23%[24%] vs. 23%[21%];P=0.96)和血糖低于目标的时间。使用在闭环开始和结束时测量的参考血浆葡萄糖值重新校准 CGM 并不优于随机 CGM。

结论

CGM 可用于估计血糖均值和变异性,但未经调整可能会高估闭环的益处。随机 CGM 提供了目标范围内和目标以下的葡萄糖时间的无偏估计,可能适用于门诊闭环的评估。

相似文献

引用本文的文献

1
Current Advances in the Management of Diabetes Mellitus.糖尿病管理的当前进展
Biomedicines. 2022 Sep 29;10(10):2436. doi: 10.3390/biomedicines10102436.
3
Examining Sensor Agreement in Neural Network Blood Glucose Prediction.检查神经网络血糖预测中的传感器一致性。
J Diabetes Sci Technol. 2022 Nov;16(6):1473-1482. doi: 10.1177/19322968211018246. Epub 2021 Jun 10.
6
Drug Delivery Strategies for the Treatment of Metabolic Diseases.药物传递策略治疗代谢疾病。
Adv Healthc Mater. 2019 Jun;8(12):e1801655. doi: 10.1002/adhm.201801655. Epub 2019 Apr 8.
7
Targeting glucose control in preterm infants: pilot studies of continuous glucose monitoring.早产儿血糖控制目标:连续血糖监测的初步研究。
Arch Dis Child Fetal Neonatal Ed. 2019 Jul;104(4):F353-F359. doi: 10.1136/archdischild-2018-314814. Epub 2018 Sep 19.
10
Proportional Insulin Infusion in Closed-Loop Control of Blood Glucose.血糖闭环控制中的比例胰岛素输注
PLoS One. 2017 Jan 6;12(1):e0169135. doi: 10.1371/journal.pone.0169135. eCollection 2017.

本文引用的文献

8
The effect of insulin feedback on closed loop glucose control.胰岛素反馈对闭环血糖控制的影响。
J Clin Endocrinol Metab. 2011 May;96(5):1402-8. doi: 10.1210/jc.2010-2578. Epub 2011 Mar 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验