Suppr超能文献

通过序列 logo 比较进行降解组的底物驱动作图。

Substrate-driven mapping of the degradome by comparison of sequence logos.

机构信息

Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.

出版信息

PLoS Comput Biol. 2013;9(11):e1003353. doi: 10.1371/journal.pcbi.1003353. Epub 2013 Nov 14.

Abstract

Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available.

摘要

序列标志常被用于说明蛋白酶的底物偏好和特异性。在这里,我们利用 MEROPS 数据库中的已编译底物,引入了一种新的度量标准,用于比较蛋白酶底物偏好。通过主成分分析和蛋白酶特异性树的构建,我们可以直观地可视化 62 种蛋白酶的相似性矩阵。由于我们的新度量标准仅基于底物数据,我们可以将包括不同进化起源的蛋白水解酶的蛋白酶树接枝。因此,我们的分析不仅证实了在序列基础上密切相关的蛋白酶之间,而且在不同进化起源和催化类型的蛋白水解酶之间,底物识别存在明显的重叠。为了说明我们的方法的适用性,我们分析了 ChEMBL 数据库中小分子的靶标在我们基于底物的蛋白酶特异性树中的分布。我们观察到注释靶标在树分支中的明显聚类,即使这些分组的靶标在蛋白质序列水平上不一定具有相似性。这突出了从肽底物中获得的知识在小分子药物设计中的价值和适用性,例如,用于预测脱靶效应或药物再利用。因此,我们的相似性度量标准允许通过比较已知的底物肽来映射降解组及其相关的药物靶标网络。基于底物的蛋白质-蛋白质界面的观点不仅限于蛋白酶领域,而且可以应用于任何具有足够数量已知底物数据的目标类别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6819/3828135/a979ae58b7d1/pcbi.1003353.g002.jpg

相似文献

1
Substrate-driven mapping of the degradome by comparison of sequence logos.
PLoS Comput Biol. 2013;9(11):e1003353. doi: 10.1371/journal.pcbi.1003353. Epub 2013 Nov 14.
2
3
PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.
PLoS One. 2012;7(11):e50300. doi: 10.1371/journal.pone.0050300. Epub 2012 Nov 29.
4
Screening for protease substrate by polyvalent phage display.
Comb Chem High Throughput Screen. 2005 Mar;8(2):197-203. doi: 10.2174/1386207053258541.
5
Protease proteomics: revealing protease in vivo functions using systems biology approaches.
Mol Aspects Med. 2008 Oct;29(5):339-58. doi: 10.1016/j.mam.2008.04.003. Epub 2008 May 1.
6
Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics.
Biotechnol Bioeng. 2010 Jun 15;106(3):339-46. doi: 10.1002/bit.22693.
7
Protease Inhibitors in View of Peptide Substrate Databases.
J Chem Inf Model. 2016 Jun 27;56(6):1228-35. doi: 10.1021/acs.jcim.6b00064. Epub 2016 Jun 9.
8
Determinants of Macromolecular Specificity from Proteomics-Derived Peptide Substrate Data.
Curr Protein Pept Sci. 2017;18(9):905-913. doi: 10.2174/1389203717666160724211231.
9
Mixture-based peptide libraries for identifying protease cleavage motifs.
Methods Mol Biol. 2009;539:79-91. doi: 10.1007/978-1-60327-003-8_5.
10
Deconvolving multiplexed protease signatures with substrate reduction and activity clustering.
PLoS Comput Biol. 2019 Sep 3;15(9):e1006909. doi: 10.1371/journal.pcbi.1006909. eCollection 2019 Sep.

引用本文的文献

2
Electrostatic recognition in substrate binding to serine proteases.
J Mol Recognit. 2018 Oct;31(10):e2727. doi: 10.1002/jmr.2727. Epub 2018 May 22.
3
Block-based characterization of protease specificity from substrate sequence profile.
BMC Bioinformatics. 2017 Oct 3;18(1):438. doi: 10.1186/s12859-017-1851-1.
4
Molecular Connectivity Predefines Polypharmacology: Aliphatic Rings, Chirality, and sp Centers Enhance Target Selectivity.
Front Pharmacol. 2017 Aug 28;8:552. doi: 10.3389/fphar.2017.00552. eCollection 2017.
5
Interactome disassembly during apoptosis occurs independent of caspase cleavage.
Mol Syst Biol. 2017 Jan 12;13(1):906. doi: 10.15252/msb.20167067.
6
Determinants of Macromolecular Specificity from Proteomics-Derived Peptide Substrate Data.
Curr Protein Pept Sci. 2017;18(9):905-913. doi: 10.2174/1389203717666160724211231.
7
Protease Inhibitors in View of Peptide Substrate Databases.
J Chem Inf Model. 2016 Jun 27;56(6):1228-35. doi: 10.1021/acs.jcim.6b00064. Epub 2016 Jun 9.
8
Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics.
Mol Cell Proteomics. 2016 Jul;15(7):2515-24. doi: 10.1074/mcp.O115.056671. Epub 2016 Apr 27.
9
Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14.
Data Brief. 2016 Feb 22;7:299-310. doi: 10.1016/j.dib.2016.02.036. eCollection 2016 Jun.
10
Involvement of Kallikrein-Related Peptidases in Normal and Pathologic Processes.
Dis Markers. 2015;2015:946572. doi: 10.1155/2015/946572. Epub 2015 Dec 9.

本文引用的文献

1
Cavities tell more than sequences: exploring functional relationships of proteases via binding pockets.
J Chem Inf Model. 2013 Aug 26;53(8):2082-92. doi: 10.1021/ci300550a. Epub 2013 Jul 24.
2
Interplay of physics and evolution in the likely origin of protein biochemical function.
Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9344-9. doi: 10.1073/pnas.1300011110. Epub 2013 May 20.
3
Cleavage entropy as quantitative measure of protease specificity.
PLoS Comput Biol. 2013 Apr;9(4):e1003007. doi: 10.1371/journal.pcbi.1003007. Epub 2013 Apr 18.
4
Proteomic identification of matrix metalloproteinase substrates in the human vasculature.
Circ Cardiovasc Genet. 2013 Feb;6(1):106-17. doi: 10.1161/CIRCGENETICS.112.964452. Epub 2012 Dec 19.
5
PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.
PLoS One. 2012;7(11):e50300. doi: 10.1371/journal.pone.0050300. Epub 2012 Nov 29.
6
Chemogenomics in drug discovery: computational methods based on the comparison of binding sites.
Future Med Chem. 2012 Oct;4(15):1971-9. doi: 10.4155/fmc.12.147.
7
Global identification of peptidase specificity by multiplex substrate profiling.
Nat Methods. 2012 Nov;9(11):1095-100. doi: 10.1038/nmeth.2182. Epub 2012 Sep 30.
8
Multi-target drugs: the trend of drug research and development.
PLoS One. 2012;7(6):e40262. doi: 10.1371/journal.pone.0040262. Epub 2012 Jun 29.
9
Large-scale prediction and testing of drug activity on side-effect targets.
Nature. 2012 Jun 10;486(7403):361-7. doi: 10.1038/nature11159.
10
Identifying mechanism-of-action targets for drugs and probes.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11178-83. doi: 10.1073/pnas.1204524109. Epub 2012 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验