Wei Wei, Yang Xu
Clinical Epidemiology and Evidence-Based Medical Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing 100050, China.
School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.
Comput Math Methods Med. 2021 Feb 27;2021:6662779. doi: 10.1155/2021/6662779. eCollection 2021.
A Noninvasive diagnosis model for digestive diseases is the vital issue for the current clinical research. Our systematic review is aimed at demonstrating diagnosis accuracy between the BP-ANN algorithm and linear regression in digestive disease patients, including their activation function and data structure.
We reported the systematic review according to the PRISMA guidelines. We searched related articles from seven electronic scholarly databases for comparison of the diagnosis accuracy focusing on BP-ANN and linear regression. The characteristics, patient number, input/output marker, diagnosis accuracy, and results/conclusions related to comparison were extracted independently based on inclusion criteria.
Nine articles met all the criteria and were enrolled in our review. Of those enrolled articles, the publishing year ranged from 1991 to 2017. The sample size ranged from 42 to 3222 digestive disease patients, and all of the patients showed comparable biomarkers between the BP-ANN algorithm and linear regression. According to our study, 8 literature demonstrated that the BP-ANN model is superior to linear regression in predicting the disease outcome based on AUROC results. One literature reported linear regression to be superior to BP-ANN for the early diagnosis of colorectal cancer.
The BP-ANN algorithm and linear regression both had high capacity in fitting the diagnostic model and BP-ANN displayed more prediction accuracy for the noninvasive diagnosis model of digestive diseases. We compared the activation functions and data structure between BP-ANN and linear regression for fitting the diagnosis model, and the data suggested that BP-ANN was a comprehensive recommendation algorithm.
消化系统疾病的无创诊断模型是当前临床研究的关键问题。我们的系统评价旨在证明BP-人工神经网络算法与线性回归在消化系统疾病患者中的诊断准确性,包括它们的激活函数和数据结构。
我们按照PRISMA指南报告了该系统评价。我们从七个电子学术数据库中检索相关文章,以比较聚焦于BP-人工神经网络和线性回归的诊断准确性。基于纳入标准,独立提取与比较相关的特征、患者数量、输入/输出指标、诊断准确性以及结果/结论。
九篇文章符合所有标准并纳入我们的评价。在这些纳入的文章中,发表年份从1991年到2017年不等。样本量从42例到3222例消化系统疾病患者,并且所有患者在BP-人工神经网络算法和线性回归之间显示出可比的生物标志物。根据我们的研究,8篇文献表明基于受试者工作特征曲线下面积结果,BP-人工神经网络模型在预测疾病结局方面优于线性回归。一篇文献报道线性回归在结直肠癌早期诊断方面优于BP-人工神经网络。
BP-人工神经网络算法和线性回归在拟合诊断模型方面都具有较高能力,并且BP-人工神经网络在消化系统疾病无创诊断模型中显示出更高的预测准确性。我们比较了BP-人工神经网络和线性回归在拟合诊断模型时的激活函数和数据结构,数据表明BP-人工神经网络是一种综合推荐算法。