Institute of Physical Chemistry, Zhejiang Normal University , Jinhua 321004, China.
ACS Nano. 2013 Dec 23;7(12):11379-87. doi: 10.1021/nn405254n. Epub 2013 Nov 21.
Carbon nanotube (CNT)-encapsulated metal sulfides/oxides are promising candidates for application as anode materials in lithium ion battery (LIB), while their electrochemical behavior and mechanism still remain unclear. A comprehensive understanding of the lithiation mechanism at nanoscale of this type of composites will benefit the design and development of high-performance LIB materials. Here, we use Co9S8/Co nanowire-filled CNTs as a model material to investigate the lithium storage mechanism by in situ transmission electron microscopy. For a Co9S8/Co nanowire-filled closed CNT, the reaction front propagates progressively during lithiation, causing an axial elongation of 4.5% and a radial expansion of 32.4%, while the lithiated nanowire core is still confined inside the CNT. Contrastingly, for an open CNT, the lithiated Co9S8 nanowire shows an axial elongation of 94.2% and is extruded out from the open CNT. In particular, a thin graphite shell is drawn out from the CNT wall by the extruded lithiated Co9S8. The thin graphite shell confines the extruded filler and protects the filler from pulverization in the following lithiation-delithiation cycles. During multiple cycles, the Co segment remains intact while the Co9S8 exhibits a reversible transformation between Co9S8 and Co nanograins. Our observations provide direct electrochemical behavior and mechanism that govern the CNT-based anode performance in LIBs.
碳纳米管(CNT)封装的金属硫化物/氧化物是作为锂离子电池(LIB)阳极材料的有前途的候选材料,但其电化学行为和机制仍不清楚。深入了解这种复合材料在纳米尺度下的嵌锂机制将有助于设计和开发高性能的 LIB 材料。在这里,我们使用 Co9S8/Co 纳米线填充的 CNT 作为模型材料,通过原位透射电子显微镜研究其储锂机制。对于一个 Co9S8/Co 纳米线填充的封闭 CNT,在嵌锂过程中反应前沿逐渐扩展,导致轴向伸长 4.5%,径向膨胀 32.4%,而嵌锂的纳米线芯仍被限制在 CNT 内部。相比之下,对于一个开放的 CNT,嵌锂的 Co9S8 纳米线显示出 94.2%的轴向伸长,并从开放的 CNT 中挤出。特别是,一个由 CNT 壁拉出的薄石墨壳包裹着挤出的嵌锂 Co9S8。薄石墨壳限制了挤出的填充物,并在随后的嵌锂-脱锂循环中保护填充物免受粉碎。在多个循环中,Co 段保持完整,而 Co9S8 则在 Co9S8 和 Co 纳米颗粒之间表现出可逆的转变。我们的观察结果提供了直接的电化学行为和机制,这些行为和机制控制着 CNT 基阳极在 LIB 中的性能。