Suppr超能文献

当代基于酵母的人类遗传变异理解方法。

Contemporary, yeast-based approaches to understanding human genetic variation.

机构信息

Department of Genome Sciences, University of Washington, Foege Building, Box 355065, 3720 15th Avenue NE, Seattle, WA 98195-5065, USA.

出版信息

Curr Opin Genet Dev. 2013 Dec;23(6):658-64. doi: 10.1016/j.gde.2013.10.001. Epub 2013 Nov 16.

Abstract

Determining how genetic variation contributes to human health and disease is a critical challenge. As one of the most genetically tractable model organisms, yeast has played a central role in meeting this challenge. The advent of new technologies, including high-throughput DNA sequencing and synthesis, proteomics, and computational methods, has vastly increased the power of yeast-based approaches to determine the consequences of human genetic variation. Recent successes include systematic exploration of the effects of gene dosage, large-scale analysis of the effect of coding variation on gene function, and the use of humanized yeast to model disease. By virtue of its manipulability, small genome size, and genetic tractability, yeast is poised to help us understand human genetic variation.

摘要

确定遗传变异如何影响人类健康和疾病是一个关键的挑战。作为最具遗传可操作性的模式生物之一,酵母在应对这一挑战方面发挥了核心作用。包括高通量 DNA 测序和合成、蛋白质组学和计算方法在内的新技术的出现,极大地提高了基于酵母的方法来确定人类遗传变异后果的能力。最近的成功包括系统地探索基因剂量的影响、大规模分析编码变异对基因功能的影响,以及利用人源化酵母来模拟疾病。由于其可操作性、小基因组大小和遗传可操作性,酵母有望帮助我们理解人类遗传变异。

相似文献

1
Contemporary, yeast-based approaches to understanding human genetic variation.
Curr Opin Genet Dev. 2013 Dec;23(6):658-64. doi: 10.1016/j.gde.2013.10.001. Epub 2013 Nov 16.
2
Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants.
Genes (Basel). 2021 Aug 24;12(9):1303. doi: 10.3390/genes12091303.
3
High-throughput analysis of in vivo protein stability.
Mol Cell Proteomics. 2013 Nov;12(11):3370-8. doi: 10.1074/mcp.O113.031708. Epub 2013 Jul 29.
4
Deciphering the Genic Basis of Yeast Fitness Variation by Simultaneous Forward and Reverse Genetics.
Mol Biol Evol. 2017 Oct 1;34(10):2486-2502. doi: 10.1093/molbev/msx151.
7
Understanding human diseases with high-throughput quantitative measurement and analysis of molecular signatures.
Sci China Life Sci. 2013 Mar;56(3):213-9. doi: 10.1007/s11427-013-4445-9. Epub 2013 Mar 23.
8
Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing.
Cell. 2018 Oct 4;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub 2018 Sep 20.
9
Signature of genetic associations in oral cancer.
Tumour Biol. 2017 Oct;39(10):1010428317725923. doi: 10.1177/1010428317725923.
10
Dissecting the genetic determinants of hemostasis and thrombosis.
Curr Opin Hematol. 2015 Sep;22(5):428-36. doi: 10.1097/MOH.0000000000000165.

引用本文的文献

2
Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants.
Genes (Basel). 2021 Aug 24;12(9):1303. doi: 10.3390/genes12091303.
3
Modeling Parkinson's Disease: Not Only Rodents?
Front Aging Neurosci. 2021 Aug 6;13:695718. doi: 10.3389/fnagi.2021.695718. eCollection 2021.
4
Exploring protein function in yeast: assaying post translational modification and human genetic variation.
Microb Cell. 2021 Jul 2;8(8):164-183. doi: 10.15698/mic2021.08.756. eCollection 2021 Aug 2.
6
Client processing is altered by novel myopathy-causing mutations in the HSP40 J domain.
PLoS One. 2020 Jun 4;15(6):e0234207. doi: 10.1371/journal.pone.0234207. eCollection 2020.
7
A yeast-based complementation assay elucidates the functional impact of 200 missense variants in human PSAT1.
J Inherit Metab Dis. 2020 Jul;43(4):758-769. doi: 10.1002/jimd.12227. Epub 2020 Feb 27.
8
Cross-Species Complementation of Nonessential Yeast Genes Establishes Platforms for Testing Inhibitors of Human Proteins.
Genetics. 2020 Mar;214(3):735-747. doi: 10.1534/genetics.119.302971. Epub 2020 Jan 14.
10
Gene overexpression screen for chromosome instability in yeast primarily identifies cell cycle progression genes.
Curr Genet. 2019 Apr;65(2):483-492. doi: 10.1007/s00294-018-0885-x. Epub 2018 Sep 22.

本文引用的文献

1
The benefits of humanized yeast models to study Parkinson's disease.
Oxid Med Cell Longev. 2013;2013:760629. doi: 10.1155/2013/760629. Epub 2013 Jul 1.
2
Prediction of gene-phenotype associations in humans, mice, and plants using phenologs.
BMC Bioinformatics. 2013 Jun 21;14:203. doi: 10.1186/1471-2105-14-203.
3
Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast.
Genome Res. 2013 Sep;23(9):1496-504. doi: 10.1101/gr.155762.113. Epub 2013 May 29.
5
Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork.
G3 (Bethesda). 2013 Feb;3(2):273-82. doi: 10.1534/g3.112.004754. Epub 2013 Feb 1.
6
Finding the sources of missing heritability in a yeast cross.
Nature. 2013 Feb 14;494(7436):234-7. doi: 10.1038/nature11867. Epub 2013 Feb 3.
7
Analyses of the effects of all ubiquitin point mutants on yeast growth rate.
J Mol Biol. 2013 Apr 26;425(8):1363-77. doi: 10.1016/j.jmb.2013.01.032. Epub 2013 Jan 30.
8
Gene copy-number alterations: a cost-benefit analysis.
Cell. 2013 Jan 31;152(3):394-405. doi: 10.1016/j.cell.2012.11.043.
9
Genotype to phenotype: lessons from model organisms for human genetics.
Nat Rev Genet. 2013 Mar;14(3):168-78. doi: 10.1038/nrg3404. Epub 2013 Jan 29.
10
Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells.
Front Oncol. 2012 Jun 13;2:59. doi: 10.3389/fonc.2012.00059. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验