Gan Xueqi, Huang Shengbin, Wu Long, Wang Yongfu, Hu Gang, Li Guangyue, Zhang Hongju, Yu Haiyang, Swerdlow Russell Howard, Chen John Xi, Yan Shirley ShiDu
Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China.
Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA.
Biochim Biophys Acta. 2014 Feb;1842(2):220-31. doi: 10.1016/j.bbadis.2013.11.009. Epub 2013 Nov 16.
Mitochondrial dysfunction is an early pathological feature of Alzheimer's disease (AD). The underlying mechanisms and strategies to repair it remain unclear. Here, we demonstrate for the first time the direct consequences and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in AD. Using cytoplasmic hybrid (cybrid) neurons with incorporated platelet mitochondria from AD and age-matched non-AD human subjects into mitochondrial DNA (mtDNA)-depleted neuronal cells, we observed that AD cybrid cells had significant changes in morphology and function; such changes associate with altered expression and distribution of dynamin-like protein (DLP1) and mitofusin 2 (Mfn2). Treatment with antioxidant protects against AD mitochondria-induced extracellular signal-regulated kinase (ERK) activation and mitochondrial fission-fusion imbalances. Notably, inhibition of ERK activation not only attenuates aberrant mitochondrial morphology and function but also restores the mitochondrial fission and fusion balance. These effects suggest a role of oxidative stress-mediated ERK signal transduction in modulation of mitochondrial fission and fusion events. Further, blockade of the mitochondrial fission protein DLP1 by a genetic manipulation with a dominant negative DLP1 (DLP1(K38A)), its expression with siRNA-DLP1, or inhibition of mitochondrial division with mdivi-1 attenuates mitochondrial functional defects observed in AD cybrid cells. Our results provide new insights into mitochondrial dysfunction resulting from changes in the ERK-fission/fusion (DLP1) machinery and signaling pathway. The protective effect of mdivi-1 and inhibition of ERK signaling on maintenance of normal mitochondrial structure and function holds promise as a potential novel therapeutic strategy for AD.
线粒体功能障碍是阿尔茨海默病(AD)的早期病理特征。其潜在机制及修复策略仍不清楚。在此,我们首次证明了AD中线粒体动力学异常相关的线粒体功能缺陷的直接后果及潜在机制。通过将来自AD和年龄匹配的非AD人类受试者的血小板线粒体整合到线粒体DNA(mtDNA)缺失的神经元细胞中构建胞质杂种(cybrid)神经元,我们观察到AD胞质杂种细胞在形态和功能上有显著变化;这些变化与动力蛋白样蛋白(DLP1)和线粒体融合蛋白2(Mfn2)的表达及分布改变有关。用抗氧化剂处理可防止AD线粒体诱导的细胞外信号调节激酶(ERK)激活及线粒体裂变-融合失衡。值得注意的是,抑制ERK激活不仅可减轻异常的线粒体形态和功能,还能恢复线粒体裂变和融合平衡。这些效应表明氧化应激介导的ERK信号转导在调节线粒体裂变和融合事件中起作用。此外,通过用显性负性DLP1(DLP1(K38A))进行基因操作、用siRNA-DLP1表达或用mdivi-1抑制线粒体分裂来阻断线粒体裂变蛋白DLP1,可减轻在AD胞质杂种细胞中观察到的线粒体功能缺陷。我们的结果为ERK-裂变/融合(DLP1)机制和信号通路变化导致的线粒体功能障碍提供了新的见解。mdivi-1的保护作用及ERK信号抑制对维持正常线粒体结构和功能的作用有望成为AD的一种潜在新型治疗策略。