Suppr超能文献

具有可调质量精度的分子同位素分布分析(MIDAs)

Molecular Isotopic Distribution Analysis (MIDAs) with adjustable mass accuracy.

作者信息

Alves Gelio, Ogurtsov Aleksey Y, Yu Yi-Kuo

机构信息

National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, 20894, USA.

出版信息

J Am Soc Mass Spectrom. 2014 Jan;25(1):57-70. doi: 10.1007/s13361-013-0733-7. Epub 2013 Nov 20.

Abstract

In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

摘要

在本文中,我们介绍了分子同位素分布分析软件(MIDAs),这是一种旨在计算具有可调节精度的分子同位素分布的新型软件工具。MIDAs提供了两种算法,一种基于多项式,另一种基于傅里叶变换,这两种算法都能准确且高效地计算分子同位素分布。基于多项式的算法几乎没有新的方面,而基于傅里叶变换的算法主要是对其他现有基于傅里叶变换的算法进行了改进。我们使用一组共识基准分子,将MIDAs中实现的两种算法的性能与八个软件包(BRAIN、Emass、Mercury、Mercury5、NeutronCluster、Qmass、JFC、IC)的性能进行了基准测试。在所提出的评估标准下,MIDAs的算法、JFC和Emass在计算粗粒度(低分辨率)同位素分布时具有相当的准确性,并且比其他软件包更准确。对于细粒度同位素分布,我们比较了IC、MIDAs的多项式算法和MIDAs的傅里叶变换算法。在这三者中,IC和MIDAs的多项式算法计算出的同位素分布更类似于其相应的精确细粒度(高分辨率)同位素分布。可以通过用户友好的网页界面(http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html)免费访问MIDAs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d12/3880471/696d1230d009/13361_2013_733_Figa_HTML.jpg

相似文献

1
Molecular Isotopic Distribution Analysis (MIDAs) with adjustable mass accuracy.
J Am Soc Mass Spectrom. 2014 Jan;25(1):57-70. doi: 10.1007/s13361-013-0733-7. Epub 2013 Nov 20.
2
BRAIN: a universal tool for high-throughput calculations of the isotopic distribution for mass spectrometry.
Anal Chem. 2013 Feb 19;85(4):1991-4. doi: 10.1021/ac303439m. Epub 2013 Jan 31.
3
An efficient method to calculate the aggregated isotopic distribution and exact center-masses.
J Am Soc Mass Spectrom. 2012 Apr;23(4):753-63. doi: 10.1007/s13361-011-0326-2. Epub 2012 Feb 15.
4
Computation of isotopic peak center-mass distribution by Fourier transform.
Anal Chem. 2012 Aug 21;84(16):7052-6. doi: 10.1021/ac301296a. Epub 2012 Aug 8.
5
Memory-efficient calculation of the isotopic mass states of a molecule.
Rapid Commun Mass Spectrom. 2010 Sep;24(18):2689-96. doi: 10.1002/rcm.4666.
6
Efficient calculation of exact mass isotopic distributions.
J Am Soc Mass Spectrom. 2007 Aug;18(8):1511-5. doi: 10.1016/j.jasms.2007.05.016. Epub 2007 May 24.
7
BRAIN 2.0: time and memory complexity improvements in the algorithm for calculating the isotope distribution.
J Am Soc Mass Spectrom. 2014 Apr;25(4):588-94. doi: 10.1007/s13361-013-0796-5. Epub 2014 Feb 12.
8
On the utility of isotopic fine structure mass spectrometry in protein identification.
Anal Chem. 2012 May 1;84(9):4042-51. doi: 10.1021/ac2034584. Epub 2012 Apr 12.
9
The isotopic distribution conundrum.
Mass Spectrom Rev. 2012 Jan-Feb;31(1):96-109. doi: 10.1002/mas.20339. Epub 2011 May 16.

引用本文的文献

3
Using Heavy Mass Isotopomers for Protein Turnover in Heavy Water Metabolic Labeling.
J Proteome Res. 2021 Apr 2;20(4):2035-2041. doi: 10.1021/acs.jproteome.0c00873. Epub 2021 Mar 4.
4
5
Partial Isotope Profiles Are Sufficient for Protein Turnover Analysis Using Closed-Form Equations of Mass Isotopomer Dynamics.
Anal Chem. 2020 Nov 3;92(21):14747-14753. doi: 10.1021/acs.analchem.0c03343. Epub 2020 Oct 21.
8
A Simple Light Isotope Metabolic Labeling (SLIM-labeling) Strategy: A Powerful Tool to Address the Dynamics of Proteome Variations .
Mol Cell Proteomics. 2017 Nov;16(11):2017-2031. doi: 10.1074/mcp.M117.066936. Epub 2017 Aug 18.

本文引用的文献

1
A general approach to calculating isotopic distributions for mass spectrometry.
J Mass Spectrom. 2020 Aug;55(8):e4498. doi: 10.1002/jms.4498. Epub 2020 May 4.
2
BRAIN: a universal tool for high-throughput calculations of the isotopic distribution for mass spectrometry.
Anal Chem. 2013 Feb 19;85(4):1991-4. doi: 10.1021/ac303439m. Epub 2013 Jan 31.
3
Computation of isotopic peak center-mass distribution by Fourier transform.
Anal Chem. 2012 Aug 21;84(16):7052-6. doi: 10.1021/ac301296a. Epub 2012 Aug 8.
4
An efficient method to calculate the aggregated isotopic distribution and exact center-masses.
J Am Soc Mass Spectrom. 2012 Apr;23(4):753-63. doi: 10.1007/s13361-011-0326-2. Epub 2012 Feb 15.
7
Ultrahigh-speed calculation of isotope distributions.
Anal Chem. 1996 Jul 1;68(13):2027-30. doi: 10.1021/ac951158i.
8
The isotopic distribution conundrum.
Mass Spectrom Rev. 2012 Jan-Feb;31(1):96-109. doi: 10.1002/mas.20339. Epub 2011 May 16.
10
Memory-efficient calculation of the isotopic mass states of a molecule.
Rapid Commun Mass Spectrom. 2010 Sep;24(18):2689-96. doi: 10.1002/rcm.4666.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验