Suppr超能文献

创新的 Bottom-Up Simple Light Isotope Metabolic(bSLIM)标记数据处理策略对定量蛋白质组学的新见解。

Novel Insights into Quantitative Proteomics from an Innovative Bottom-Up Simple Light Isotope Metabolic (bSLIM) Labeling Data Processing Strategy.

机构信息

≪ Mitochondria, Metals, and Oxidative Stress ≫ Group, Université de Paris-CNRS, Institut Jacques Monod, 75013 Paris, France.

National Center for Biotechnology Information, NLM, NIH, Bethesda, Maryland 20894, United States.

出版信息

J Proteome Res. 2021 Mar 5;20(3):1476-1487. doi: 10.1021/acs.jproteome.0c00478. Epub 2021 Feb 11.

Abstract

Simple light isotope metabolic labeling (SLIM labeling) is an innovative method to quantify variations in the proteome based on an original labeling strategy. Heterotrophic cells grown in U-[C] as the sole source of carbon synthesize U-[C]-amino acids, which are incorporated into proteins, giving rise to U-[C]-proteins. This results in a large increase in the intensity of the monoisotope ion of peptides and proteins, thus allowing higher identification scores and protein sequence coverage in mass spectrometry experiments. This method, initially developed for signal processing and quantification of the incorporation rate of C into peptides, was based on a multistep process that was difficult to implement for many laboratories. To overcome these limitations, we developed a new theoretical background to analyze bottom-up proteomics data using SLIM-labeling (bSLIM) and established simple procedures based on open-source software, using dedicated OpenMS modules, and embedded R scripts to process the bSLIM experimental data. These new tools allow computation of both the C abundance in peptides to follow the kinetics of protein labeling and the molar fraction of unlabeled and C-labeled peptides in multiplexing experiments to determine the relative abundance of proteins extracted under different biological conditions. They also make it possible to consider incomplete C labeling, such as that observed in cells with nutritional requirements for nonlabeled amino acids. These tools were validated on an experimental dataset produced using various yeast strains of and growth conditions. The workflows are built on the implementation of appropriate calculation modules in a KNIME working environment. These new integrated tools provide a convenient framework for the wider use of the SLIM-labeling strategy.

摘要

简单轻同位素代谢标记(SLIM 标记)是一种创新的方法,可根据原始标记策略对蛋白质组中的变化进行定量。在 U-[C] 作为唯一碳源的条件下生长的异养细胞合成 U-[C]-氨基酸,这些氨基酸被掺入蛋白质中,产生 U-[C]-蛋白质。这导致肽和蛋白质的单同位素离子强度大大增加,从而在质谱实验中允许更高的鉴定分数和蛋白质序列覆盖率。该方法最初是为信号处理和 C 掺入率的定量而开发的,基于一个难以在许多实验室实施的多步骤过程。为了克服这些限制,我们开发了一种新的理论背景,用于使用 SLIM 标记(bSLIM)分析自上而下的蛋白质组学数据,并基于开源软件建立了简单的程序,使用专用的 OpenMS 模块,并嵌入 R 脚本来处理 bSLIM 实验数据。这些新工具允许计算肽中的 C 丰度以跟踪蛋白质标记的动力学,以及在多路复用实验中未标记和 C 标记肽的摩尔分数,以确定在不同生物条件下提取的蛋白质的相对丰度。它们还可以考虑不完全的 C 标记,例如在需要非标记氨基酸的营养条件下的细胞中观察到的标记。这些工具在使用不同和生长条件的酵母菌株生成的实验数据集上进行了验证。工作流程建立在 KNIME 工作环境中实施适当计算模块的基础上。这些新的集成工具为更广泛地使用 SLIM 标记策略提供了便利的框架。

相似文献

10
ICPL labeling strategies for proteome research.用于蛋白质组研究的ICPL标记策略。
Methods Mol Biol. 2011;753:55-64. doi: 10.1007/978-1-61779-148-2_4.

引用本文的文献

5
Determining and interpreting protein lifetimes in mammalian tissues.测定和阐释哺乳动物组织中的蛋白质寿命。
Trends Biochem Sci. 2023 Feb;48(2):106-118. doi: 10.1016/j.tibs.2022.08.011. Epub 2022 Sep 23.

本文引用的文献

2
EPIFANY: A Method for Efficient High-Confidence Protein Inference.EPIFANY:一种高效高可信度蛋白质推断方法。
J Proteome Res. 2020 Mar 6;19(3):1060-1072. doi: 10.1021/acs.jproteome.9b00566. Epub 2020 Feb 13.
8
KNIME for reproducible cross-domain analysis of life science data.KNIME 用于生命科学数据的可重复跨领域分析。
J Biotechnol. 2017 Nov 10;261:149-156. doi: 10.1016/j.jbiotec.2017.07.028. Epub 2017 Jul 27.
9
Targeted Feature Detection for Data-Dependent Shotgun Proteomics.针对数据依赖型鸟枪法蛋白质组学的靶向特征检测。
J Proteome Res. 2017 Aug 4;16(8):2964-2974. doi: 10.1021/acs.jproteome.7b00248. Epub 2017 Jul 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验