Ocular Trauma, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Houston, Texas.
Invest Ophthalmol Vis Sci. 2014 Jan 9;55(1):198-209. doi: 10.1167/iovs.13-11740.
Retinal pigmented epithelium derived from human induced pluripotent stem (iPS) cells (iPS-RPE) may be a source of cells for transplantation. For this reason, it is essential to determine the functional competence of iPS-RPE. One key role of the RPE is uptake and processing of retinoids via the visual cycle. The purpose of this study is to investigate the expression of visual cycle proteins and the functional ability of the visual cycle in iPS-RPE.
iPS-RPE was derived from human iPS cells. Immunocytochemistry, RT-PCR, and Western blot analysis were used to detect expression of RPE genes lecithin-retinol acyl transferase (LRAT), RPE65, cellular retinaldehyde-binding protein (CRALBP), and pigment epithelium-derived factor (PEDF). All-trans retinol was delivered to cultured cells or whole cell homogenate to assess the ability of the iPS-RPE to process retinoids.
Cultured iPS-RPE expresses visual cycle genes LRAT, CRALBP, and RPE65. After incubation with all-trans retinol, iPS-RPE synthesized up to 2942 ± 551 pmol/mg protein all-trans retinyl esters. Inhibition of LRAT with N-ethylmaleimide (NEM) prevented retinyl ester synthesis. Significantly, after incubation with all-trans retinol, iPS-RPE released 188 ± 88 pmol/mg protein 11-cis retinaldehyde into the culture media.
iPS-RPE develops classic RPE characteristics and maintains expression of visual cycle proteins. The results of this study confirm that iPS-RPE possesses the machinery to process retinoids for support of visual pigment regeneration. Inhibition of all-trans retinyl ester accumulation by NEM confirms LRAT is active in iPS-RPE. Finally, the detection of 11-cis retinaldehyde in the culture medium demonstrates the cells' ability to process retinoids through the visual cycle. This study demonstrates expression of key visual cycle machinery and complete visual cycle activity in iPS-RPE.
人诱导多能干细胞(iPS)来源的视网膜色素上皮(iPS-RPE)细胞可能是细胞移植的来源。因此,确定 iPS-RPE 的功能能力至关重要。RPE 的一个关键作用是通过视觉循环摄取和处理视黄醇。本研究旨在研究 iPS-RPE 中视觉循环蛋白的表达和视觉循环的功能能力。
iPS-RPE 由人 iPS 细胞衍生而来。免疫细胞化学、RT-PCR 和 Western blot 分析用于检测 RPE 基因卵磷脂-视黄醇酰基转移酶(LRAT)、RPE65、细胞视网膜结合蛋白(CRALBP)和色素上皮衍生因子(PEDF)的表达。将全反式视黄醇递送至培养细胞或整个细胞匀浆中,以评估 iPS-RPE 处理视黄醇的能力。
培养的 iPS-RPE 表达视觉循环基因 LRAT、CRALBP 和 RPE65。在用全反式视黄醇孵育后,iPS-RPE 合成了多达 2942±551 pmol/mg 蛋白的全反式视黄基酯。用 N-乙基马来酰亚胺(NEM)抑制 LRAT 可防止视黄基酯的合成。重要的是,在用全反式视黄醇孵育后,iPS-RPE 将 188±88 pmol/mg 蛋白 11-顺式视黄醛释放到培养基中。
iPS-RPE 具有经典 RPE 特征,并维持视觉循环蛋白的表达。本研究结果证实,iPS-RPE 具有处理视黄醇以支持视觉色素再生的机制。用 NEM 抑制全反式视黄基酯的积累证实了 LRAT 在 iPS-RPE 中是活跃的。最后,在培养基中检测到 11-顺式视黄醛表明细胞能够通过视觉循环处理视黄醇。本研究证明了 iPS-RPE 中关键视觉循环机制的表达和完整的视觉循环活性。