‡Dipartimento di Neurologia e Laboratorio di Neuroscienze, IRCCS Istituto Auxologico Italiano, 20133 Milan, Italy.
Biochem Soc Trans. 2013 Dec;41(6):1598-604. doi: 10.1042/BST20130118.
ALS (amyotrophic lateral sclerosis), a fatal motoneuron (motor neuron) disease, occurs in clinically indistinguishable sporadic (sALS) or familial (fALS) forms. Most fALS-related mutant proteins identified so far are prone to misfolding, and must be degraded in order to protect motoneurons from their toxicity. This process, mediated by molecular chaperones, requires proteasome or autophagic systems. Motoneurons are particularly sensitive to misfolded protein toxicity, but other cell types such as the muscle cells could also be affected. Muscle-restricted expression of the fALS protein mutSOD1 (mutant superoxide dismutase 1) induces muscle atrophy and motoneuron death. We found that several genes have an altered expression in muscles of transgenic ALS mice at different stages of disease. MyoD, myogenin, atrogin-1, TGFβ1 (transforming growth factor β1) and components of the cell response to proteotoxicity [HSPB8 (heat shock 22kDa protein 8), Bag3 (Bcl-2-associated athanogene 3) and p62] are all up-regulated by mutSOD1 in skeletal muscle. When we compared the potential mutSOD1 toxicity in motoneuron (NSC34) and muscle (C2C12) cells, we found that muscle ALS models possess much higher chymotryptic proteasome activity and autophagy power than motoneuron ALS models. As a result, mutSOD1 molecular behaviour was found to be very different. MutSOD1 clearance was found to be much higher in muscle than in motoneurons. MutSOD1 aggregated and impaired proteasomes only in motoneurons, which were particularly sensitive to superoxide-induced oxidative stress. Moreover, in muscle cells, mutSOD1 was found to be soluble even after proteasome inhibition. This effect could be associated with a higher mutSOD1 autophagic clearance. Therefore muscle cells seem to manage misfolded mutSOD1 more efficiently than motoneurons, thus mutSOD1 toxicity in muscle may not directly depend on aggregation.
肌萎缩侧索硬化症(ALS),一种致命的运动神经元(motor neuron)疾病,有临床上无法区分的散发性(sALS)或家族性(fALS)形式。到目前为止,大多数与 fALS 相关的突变蛋白都容易错误折叠,必须降解,以保护运动神经元免受其毒性。这个过程由分子伴侣介导,需要蛋白酶体或自噬系统。运动神经元对错误折叠的蛋白质毒性特别敏感,但其他细胞类型,如肌肉细胞,也可能受到影响。肌肉特异性表达 fALS 蛋白 mutSOD1(突变超氧化物歧化酶 1)会导致肌肉萎缩和运动神经元死亡。我们发现,在疾病的不同阶段,几种基因在转基因 ALS 小鼠的肌肉中有异常表达。MyoD、myogenin、atrogin-1、TGFβ1(转化生长因子β1)和细胞对蛋白毒性反应的成分[HSPB8(热休克 22kDa 蛋白 8)、Bag3(Bcl-2 相关抗凋亡基因 3)和 p62]在骨骼肌中均由 mutSOD1 上调。当我们比较运动神经元(NSC34)和肌肉(C2C12)细胞中潜在的 mutSOD1 毒性时,我们发现肌肉 ALS 模型比运动神经元 ALS 模型具有更高的糜蛋白酶体活性和自噬能力。因此,mutSOD1 的分子行为非常不同。我们发现,mutSOD1 在肌肉中的清除率远高于运动神经元。只有在运动神经元中,mutSOD1 才会聚集并损害蛋白酶体,而运动神经元对超氧化物引起的氧化应激特别敏感。此外,在肌肉细胞中,即使在蛋白酶体抑制后,也发现 mutSOD1 是可溶的。这种效应可能与更高的 mutSOD1 自噬清除率有关。因此,肌肉细胞似乎比运动神经元更有效地处理错误折叠的 mutSOD1,因此肌肉中的 mutSOD1 毒性可能不直接依赖于聚集。