Suppr超能文献

磁共振弹性成像中位移向量数据的同时采集的采样间隔调制:理论与应用。

Sample interval modulation for the simultaneous acquisition of displacement vector data in magnetic resonance elastography: theory and application.

机构信息

Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL, USA.

出版信息

Phys Med Biol. 2013 Dec 21;58(24):8663-75. doi: 10.1088/0031-9155/58/24/8663. Epub 2013 Nov 21.

Abstract

SampLe Interval Modulation-magnetic resonance elastography (SLIM-MRE) is introduced for simultaneously encoding all three displacement projections of a monofrequency vibration into the MR signal phase. In SLIM-MRE, the individual displacement components are observed using different sample intervals. In doing so, the components are modulated with different apparent frequencies in the MR signal phase expressed as a harmonic function of the start time of the motion encoding gradients and can thus be decomposed by applying a Fourier transform to the sampled multidirectional MR phases. In this work, the theoretical foundations of SLIM-MRE are presented and the new idea is implemented using a high field (11.7 T) vertical bore magnetic resonance imaging system on an inhomogeneous agarose gel phantom sample. The local frequency estimation-derived stiffness values were the same within the error margins for both the new SLIM-MRE method and for conventional MRE, while the number of temporally-resolved MRE experiments needed for each study was reduced from three to one. In this work, we present for the first time, monofrequency displacement data along three sensitization directions that were acquired simultaneously and stored in the same k-space.

摘要

样本间隔调制磁共振弹性成像(SLIM-MRE)用于将单频振动的所有三个位移投影同时编码到磁共振信号相位中。在 SLIM-MRE 中,使用不同的样本间隔观察各个位移分量。通过这种方式,在磁共振信号相位中,各分量以运动编码梯度开始时间的谐波函数的形式用不同的表观频率进行调制,因此可以通过对采样的多方向磁共振相位进行傅里叶变换来分解。在这项工作中,介绍了 SLIM-MRE 的理论基础,并在不均匀琼脂糖凝胶模型样本上的高磁场(11.7T)垂直孔磁共振成像系统上实现了这一新想法。对于新的 SLIM-MRE 方法和传统的 MRE,基于局部频率估计的杨氏模量值在误差范围内是相同的,而对于每项研究所需的时间分辨 MRE 实验次数从三个减少到一个。在这项工作中,我们首次展示了沿着三个敏感化方向同时采集并存储在同一个 k 空间中的单频位移数据。

相似文献

2
Selective spectral displacement projection for multifrequency MRE.
Phys Med Biol. 2013 Aug 21;58(16):5771-81. doi: 10.1088/0031-9155/58/16/5771. Epub 2013 Aug 2.
3
Harmonic wideband simultaneous dual-frequency MR Elastography.
NMR Biomed. 2021 Feb;34(2):e4442. doi: 10.1002/nbm.4442. Epub 2020 Nov 11.
4
Simultaneous, multidirectional acquisition of displacement fields in magnetic resonance elastography of the in vivo human brain.
J Magn Reson Imaging. 2015 Aug;42(2):297-304. doi: 10.1002/jmri.24806. Epub 2014 Nov 26.
5
Fast abdominal magnetic resonance elastography with simultaneous encoding of three-dimensional displacements.
Magn Reson Imaging. 2024 May;108:138-145. doi: 10.1016/j.mri.2024.02.009. Epub 2024 Feb 13.
7
A Versatile MR Elastography Research Tool with a Modified Motion Signal-to-noise Ratio Approach.
Magn Reson Med Sci. 2024 Oct 1;23(4):417-427. doi: 10.2463/mrms.mp.2022-0149. Epub 2023 Apr 12.
8
Simultaneous MR elastography and diffusion acquisitions: diffusion-MRE (dMRE).
Magn Reson Med. 2014 May;71(5):1682-8. doi: 10.1002/mrm.25180. Epub 2014 Mar 19.
10
Quantitative analysis of vibration waves based on Fourier transform in magnetic resonance elastography.
Radiol Phys Technol. 2020 Sep;13(3):268-275. doi: 10.1007/s12194-020-00579-y. Epub 2020 Aug 6.

引用本文的文献

1
Fast, motion-robust MR elastography with distributed, generalized encoding.
Magn Reson Med. 2025 Jul 10. doi: 10.1002/mrm.30631.
2
3D MR elastography at 0.55 T: Concomitant field effects and feasibility.
Magn Reson Med. 2025 Apr;93(4):1602-1614. doi: 10.1002/mrm.30377. Epub 2024 Nov 25.
7
OSCILLATE: A low-rank approach for accelerated magnetic resonance elastography.
Magn Reson Med. 2022 Oct;88(4):1659-1672. doi: 10.1002/mrm.29308. Epub 2022 Jun 1.
8
10
MR elastography: Principles, guidelines, and terminology.
Magn Reson Med. 2021 May;85(5):2377-2390. doi: 10.1002/mrm.28627. Epub 2020 Dec 9.

本文引用的文献

1
Selective spectral displacement projection for multifrequency MRE.
Phys Med Biol. 2013 Aug 21;58(16):5771-81. doi: 10.1088/0031-9155/58/16/5771. Epub 2013 Aug 2.
2
Local mechanical properties of white matter structures in the human brain.
Neuroimage. 2013 Oct 1;79:145-52. doi: 10.1016/j.neuroimage.2013.04.089. Epub 2013 May 1.
4
Multiresolution MR elastography using nonlinear inversion.
Med Phys. 2012 Oct;39(10):6388-96. doi: 10.1118/1.4754649.
5
In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves.
Magn Reson Med. 2013 Sep;70(3):671-83. doi: 10.1002/mrm.24499. Epub 2012 Sep 24.
6
Wideband MR elastography for viscoelasticity model identification.
Magn Reson Med. 2013 Aug;70(2):479-89. doi: 10.1002/mrm.24495. Epub 2012 Sep 21.
7
Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study.
J Magn Reson Imaging. 2013 Jan;37(1):217-26. doi: 10.1002/jmri.23797. Epub 2012 Sep 17.
8
Review of MR elastography applications and recent developments.
J Magn Reson Imaging. 2012 Oct;36(4):757-74. doi: 10.1002/jmri.23597.
9
Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6650-5. doi: 10.1073/pnas.1200151109. Epub 2012 Apr 5.
10
Multifrequency inversion in magnetic resonance elastography.
Phys Med Biol. 2012 Apr 21;57(8):2329-46. doi: 10.1088/0031-9155/57/8/2329. Epub 2012 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验