Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA.
University of Illinois College of Medicine, Urbana, Illinois, USA.
Magn Reson Med. 2022 Oct;88(4):1659-1672. doi: 10.1002/mrm.29308. Epub 2022 Jun 1.
MR elastography (MRE) is a technique to characterize brain mechanical properties in vivo. Due to the need to capture tissue deformation in multiple directions over time, MRE is an inherently long acquisition, which limits achievable resolution and use in challenging populations. The purpose of this work is to develop a method for accelerating MRE acquisition by using low-rank image reconstruction to exploit inherent spatiotemporal correlations in MRE data.
The proposed MRE sampling and reconstruction method, OSCILLATE (Observing Spatiotemporal Correlations for Imaging with Low-rank Leveraged Acceleration in Turbo Elastography), involves alternating which k-space points are sampled between each repetition by a reduction factor, R Using a predetermined temporal basis from a low-resolution navigator in a joint low-rank image reconstruction, all images can be accurately reconstructed from a reduced amount of k-space data.
Decomposition of MRE displacement data demonstrated that, on average, 96.1% of all energy from an MRE dataset is captured at rank L = 12 (reduced from a full rank of 24). Retrospectively undersampling data with R = 2 and reconstructing at low-rank (L = 12) yields highly accurate stiffness maps with voxel-wise error of 5.8% ± 0.7%. Prospectively undersampled data at R = 2 were successfully reconstructed without loss of material property map fidelity, with average global stiffness error of 1.0% ± 0.7% compared to fully sampled data.
OSCILLATE produces whole-brain MRE data at 2 mm isotropic resolution in 1 min 48 s.
磁共振弹性成像(MRE)是一种在体内描述脑力学特性的技术。由于需要在多个方向上随时间捕获组织变形,因此 MRE 是一种固有的长时间采集,这限制了可实现的分辨率和在具有挑战性的人群中的应用。这项工作的目的是开发一种通过使用低秩图像重建来利用 MRE 数据中的固有时空相关性来加速 MRE 采集的方法。
所提出的 MRE 采样和重建方法 OSCILLATE(通过在涡轮弹性成像中利用低秩杠杆加速来观察时空相关性进行成像)涉及通过降低因子 R 在每个重复之间交替采样哪些 k 空间点。使用来自低分辨率导航仪的预定时间基,通过联合低秩图像重建,可以从减少的 k 空间数据量准确重建所有图像。
MRE 位移数据的分解表明,平均而言,MRE 数据集的所有能量的 96.1%都在秩 L=12 处捕获(从全秩 24 减少)。使用 R=2 进行回顾性欠采样数据并在低秩(L=12)下重建可产生具有 5.8%±0.7%体素误差的高度准确的刚度图。前瞻性地以 R=2 欠采样的数据成功重建,而不会损失材料属性图的保真度,与完全采样数据相比,平均全局刚度误差为 1.0%±0.7%。
OSCILLATE 在 1 分 48 秒内以 2mm 各向同性分辨率生成全脑 MRE 数据。