Suppr超能文献

基于蒸发液滴中 Marangoni 流的生物传感器设计。

Biosensor design based on Marangoni flow in an evaporating drop.

机构信息

Department of Biomedical Engineering, Vanderbilt University, VU Station B 351631, Nashville, TN 37235, USA.

出版信息

Lab Chip. 2014 Jan 21;14(2):315-24. doi: 10.1039/c3lc50991e. Epub 2013 Nov 20.

Abstract

Effective point-of-care diagnostics require a biomarker detection strategy that is low-cost and simple-to-use while achieving a clinically relevant limit of detection. Here we report a biosensor that uses secondary flows arising from surface Marangoni stresses in an evaporating drop to concentrate target-mediated particle aggregates in a visually detectable spot. The spot size increases with increasing target concentration within the dynamic range of the assay. The particle deposition patterns are visually detectable and easily measured with simple optical techniques. We use optical coherence tomography to characterize the effect of cross-sectional flow fields on the motion of particles in the presence and absence of target (aggregated and non-aggregated particles, respectively). We show that choice of substrate material and the presence of salts and glycerol in solution promote the Marangoni-induced flows that are necessary to produce signal in the proposed design. These evaporation-driven flows generate signal in the assay on a PDMS substrate but not substrates with greater thermal conductivity like indium tin oxide-coated glass. In this proof-of-concept design we use the M13K07 bacteriophage as a model target and 1 μm-diameter particles surface functionalized with anti-M13 monoclonal antibodies. Using standard microscopy-based techniques to measure the final spot size, the assay has a calculated limit-of-detection of approximately 100 fM. Approximately 80% of the maximum signal is generated within 10 minutes of depositing a 1 μL drop of reacted sample on PDMS enabling a relatively quick time-to-result.

摘要

有效的即时诊断需要一种低成本、易于使用的生物标志物检测策略,同时达到临床相关的检测限。在这里,我们报告了一种使用蒸发液滴中表面马兰戈尼应力产生的二次流来浓缩靶介导的粒子聚集体到可视检测点的生物传感器。在分析物的动态范围内,检测点的大小随靶浓度的增加而增大。粒子沉积模式是可视的,并且可以使用简单的光学技术轻松测量。我们使用光学相干断层扫描来描述横截面流场对存在和不存在靶(分别为聚集和非聚集粒子)时粒子在流动中的影响。我们表明,选择基底材料以及溶液中盐和甘油的存在促进了马兰戈尼诱导的流动,这是在提出的设计中产生信号所必需的。这些蒸发驱动的流动在 PDMS 基底上的分析物中产生信号,但在热导率更高的基底(如氧化铟锡涂覆玻璃)上则不会。在这个概念验证设计中,我们使用 M13K07 噬菌体作为模型靶标和 1 μm 直径的粒子,其表面用抗 M13 单克隆抗体功能化。使用基于标准显微镜的技术测量最终检测点的大小,该分析物的计算检测限约为 100 fM。在 PDMS 上沉积 1 μL 反应样品后,大约 80%的最大信号在 10 分钟内产生,这使得结果相对较快。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验